−dxdy(x2+2xy)+2xy+3y2=0
Let y(x)=xv(x), which gives dxdy=v+xdxdv :
−(v+xdxdv)(x2+2x2v)+2x2v+3x2v2=0 Simplify:
x2(−xdxdv(1+2v)−v−2v2+2v+3v2)=0
v(v+1)1+2vdv=xdx
(v1+v+11)dv=xdx Integrate
∫(v1+v+11)dv=∫xdx
ln(∣v∣)+ln(∣v+1∣)=ln(∣x∣)+lnc1
v(v+1)=c1x
xv(xv+x)=c1x3
y2+xy=c1x3
Comments