Question #282082

(2xy+3y2)dx-(2xy+X2)dy=0

1
Expert's answer
2021-12-23T06:26:44-0500
dydx(x2+2xy)+2xy+3y2=0- \frac{{dy}}{{dx}}( {x^2} + 2xy) +2xy+ 3{y^2} = 0


Let y(x)=xv(x)y(x) = xv(x), which gives dydx=v+xdvdx\dfrac{dy}{dx}=v+x\dfrac{dv}{dx} :

(v+xdvdx)(x2+2x2v)+2x2v+3x2v2=0-(v+x\dfrac{dv}{dx})( x^2 + 2x^2v) +2x^2v+3x^2v^2 = 0

Simplify:


x2(xdvdx(1+2v)v2v2+2v+3v2)=0x^2(-x\dfrac{dv}{dx}(1+2v)-v-2v^2+2v+3v^2)=0

1+2vv(v+1)dv=dxx\dfrac{1+2v}{v(v+1)}dv=\dfrac{dx}{x}

(1v+1v+1)dv=dxx(\dfrac{1}{v}+\dfrac{1}{v+1})dv=\dfrac{dx}{x}

Integrate


(1v+1v+1)dv=dxx\int(\dfrac{1}{v}+\dfrac{1}{v+1})dv=\int\dfrac{dx}{x}

ln(v)+ln(v+1)=ln(x)+lnc1\ln(|v|)+\ln(|v+1|)=\ln(|x|)+\ln c_1

v(v+1)=c1xv(v+1)=c_1x

xv(xv+x)=c1x3xv(xv+x)=c_1x^3

y2+xy=c1x3y^2+xy=c_1x^3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS