characteristic equation:
k2−2k+1=0
k1,2=1
complementary solution:
yc=c1ex+c2xex
particular solution:
yp=−y1∫Wy2g(x)dx+y2∫Wy1g(x)dx
where y1=ex,y2=xex
W=y1y2′−y1′y2=ex(ex+xex)−xe2x=e2x
g(x)=xextan−1x
∫Wy2g(x)dx=∫e2xx2e2xtan−1xdx=6ln(x2+1)+2x3tan−1x−x2
∫Wy1g(x)dx=∫e2xxe2xtan−1xdx=2(x2+1)tan−1x−x
y=yc+yp=c1ex+c2xex−ex6ln(x2+1)+2x3tan−1x−x2+xex2(x2+1)tan−1x−x
Comments