Question #281848

Use the method of variation of parameters to solve the differential equation:


y"-2y'+y=xe^xtan-1x


1
Expert's answer
2021-12-23T06:17:19-0500

characteristic equation:

k22k+1=0k^2-2k+1=0

k1,2=1k_{1,2}=1

complementary solution:

yc=c1ex+c2xexy_c=c_1e^x+c_2xe^x


particular solution:


yp=y1y2g(x)Wdx+y2y1g(x)Wdxy_p=-y_1\int\frac{y_2g(x)}{W}dx+y_2\int\frac{y_1g(x)}{W}dx


where y1=ex,y2=xexy_1=e^x,y_2=xe^x

W=y1y2y1y2=ex(ex+xex)xe2x=e2xW=y_1y'_2-y'_1y_2=e^x(e^x+xe^x)-xe^{2x}=e^{2x}

g(x)=xextan1xg(x)=xe^xtan^{-1}x


y2g(x)Wdx=x2e2xtan1xe2xdx=ln(x2+1)+2x3tan1xx26\int\frac{y_2g(x)}{W}dx=\int\frac{x^2e^{2x}tan^{-1}x}{e^{2x}}dx=\frac{ln(x^2+1)+2x^3tan^{-1}x-x^2}{6}


y1g(x)Wdx=xe2xtan1xe2xdx=(x2+1)tan1xx2\int\frac{y_1g(x)}{W}dx=\int\frac{xe^{2x}tan^{-1}x}{e^{2x}}dx=\frac{(x^2+1)tan^{-1}x-x}{2}


y=yc+yp=c1ex+c2xexexln(x2+1)+2x3tan1xx26+xex(x2+1)tan1xx2y=y_c+y_p=c_1e^x+c_2xe^x-e^x\frac{ln(x^2+1)+2x^3tan^{-1}x-x^2}{6}+xe^x\frac{(x^2+1)tan^{-1}x-x}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS