1.
W ( y 1 , y 2 , y 3 , x ) = ∣ x 2 x + 1 x − 3 2 x 1 1 2 0 0 ∣ W(y_1, y_2, y_3, x)=\begin{vmatrix}
x^2 & x+1 & x-3 \\
2x & 1 & 1 \\
2 & 0 & 0
\end{vmatrix} W ( y 1 , y 2 , y 3 , x ) = ∣ ∣ x 2 2 x 2 x + 1 1 0 x − 3 1 0 ∣ ∣
= 2 ∣ x + 1 x − 3 1 1 ∣ = 2 ( x + 1 − x + 3 ) = 8 ≠ 0 =2\begin{vmatrix}
x+1 & x-3 \\
1 & 1
\end{vmatrix}=2(x+1-x+3)=8\not=0 = 2 ∣ ∣ x + 1 1 x − 3 1 ∣ ∣ = 2 ( x + 1 − x + 3 ) = 8 = 0 Therefore, the set { x 2 , x + 1 , x − 3 } \{x^2, x+1, x-3\} { x 2 , x + 1 , x − 3 } is linearly independent on ( − ∞ , ∞ ) . (-\infin, \infin). ( − ∞ , ∞ ) .
2.
W ( y 1 , y 2 , x ) = ∣ 3 e 2 x e 2 x 6 e 2 x 2 e 2 x ∣ W(y_1, y_2, x)=\begin{vmatrix}
3e^{2x} & e^{2x} \\
6e^{2x} & 2e^{2x}
\end{vmatrix} W ( y 1 , y 2 , x ) = ∣ ∣ 3 e 2 x 6 e 2 x e 2 x 2 e 2 x ∣ ∣
= 6 e 2 x − 6 e 2 x = 0 =6e^{2x}-6e^{2x}=0 = 6 e 2 x − 6 e 2 x = 0 Therefore, the set { 3 e 2 x , e 2 x } \{3e^{2x}, e^{2x}\} { 3 e 2 x , e 2 x } is linearly dependent on ( − ∞ , ∞ ) . (-\infin, \infin). ( − ∞ , ∞ ) .
3.
W ( y 1 , y 2 , y 3 , x ) = ∣ x 2 x 3 x 4 2 x 3 x 2 4 x 3 2 6 x 12 x 2 ∣ W(y_1, y_2, y_3, x)=\begin{vmatrix}
x^2 & x^3 & x^4 \\
2x & 3x^2 & 4x^3 \\
2 & 6x & 12x^2
\end{vmatrix} W ( y 1 , y 2 , y 3 , x ) = ∣ ∣ x 2 2 x 2 x 3 3 x 2 6 x x 4 4 x 3 12 x 2 ∣ ∣
= x 2 ( 36 x 4 − 24 x 4 ) − x 3 ( 24 x 3 − 8 x 3 ) =x^2(36x^4-24x^4)-x^3(24x^3-8x^3) = x 2 ( 36 x 4 − 24 x 4 ) − x 3 ( 24 x 3 − 8 x 3 ) + x 4 ( 12 x 2 − 6 x 2 ) = 12 x 6 − 16 x 6 + 6 x 6 +x^4(12x^2-6x^2)=12x^6-16x^6+6x^6 + x 4 ( 12 x 2 − 6 x 2 ) = 12 x 6 − 16 x 6 + 6 x 6
= 2 x 6 ≠ 0 , e x c e p t a t x = 0 =2x^6\not=0, except\ at\ \ x=0 = 2 x 6 = 0 , e x ce pt a t x = 0
Therefore, the set { x 2 , x 3 , x 4 } \{x^2, x^3, x^4\} { x 2 , x 3 , x 4 } is linearly independent on ( − ∞ , ∞ ) . (-\infin, \infin). ( − ∞ , ∞ ) .
Comments