Question #280313

[C] Solve the following differential equation:

x^ 2 y^ " - 2xy'-4y=x^ 2 +2 log x


1
Expert's answer
2021-12-20T19:03:00-0500

Let us solve the differential equation x2y2xy4y=x2+2logx.x^ 2 y''- 2xy'-4y=x^ 2 +2 \log x.

Let us use the transformation x=et.x=e^t. Then yx=ytet, yx2=(yt2yt)e2t.y'_x=y_t'e^{-t},\ y_{x^2}''= (y_{t^2}''-y_t')e^{-2t}.

We get the equation e2t(yt2yt)e2t2etytet4y=e2t+2t,e^{2t}(y_{t^2}''-y_t')e^{-2t}- 2e^{t}y_t'e^{-t}-4y=e^{2t} +2t, which is equivalent to

yt23yt4y=e2t+2t.y_{t^2}''- 3y_t'-4y=e^{2t} +2t.

The characteristic equation k23k4=0k^2-3k-4=0 of the differential equation yt23yt4y=0y_{t^2}''- 3y_t'-4y=0 is equivalent to(k4)(k+1)=0,(k-4)(k+1)=0, and hence has the roots k1=4, k2=1.k_1=4,\ k_2=-1.

Therefore, the general solution of the last differential equation is y(t)=C1e4t+C2et+yp,y(t)=C_1e^{4t}+C_2e^{-t}+y_p, where yp=ae2t+bt+c.y_p=ae^{2t}+bt+c. It follows that yp=2ae2t+b, yp=4ae2t,y_p'=2ae^{2t}+b,\ y_p''=4ae^{2t}, and hence we get

4ae2t3(2ae2t+b)4(ae2t+bt+c)=e2t+2t.4ae^{2t}-3(2ae^{2t}+b)-4(ae^{2t}+bt+c)= e^{2t} +2t.

It follows that 6ae2t4bt3b4c=e2t+2t,-6ae^{2t}-4bt-3b-4c= e^{2t} +2t, and hence 6a=1, 4b=2, 3b4c=0.-6a=-1,\ -4b=2,\ -3b-4c=0. Consequently, a=16, b=12, c=34b=38.a=\frac{1}6,\ b=-\frac{1}2,\ c=-\frac{3}4b=\frac{3}{8}.

We conclude that y(t)=C1e4t+C2et+16e2t12t+38.y(t)=C_1e^{4t}+C_2e^{-t}+\frac{1}6e^{2t}-\frac{1}2t+\frac{3}8.


Therefore, the general solution of the differential equation x2y2xy4y=x2+2logxx^ 2 y''- 2xy'-4y=x^ 2 +2 \log x is y(x)=C1x4+C2x1+16x212logx+38.y(x)=C_1x^4+C_2x^{-1}+\frac{1}6x^2-\frac{1}2\log x+\frac{3}8.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS