Question #280153

Solve this Diffrential equation (1-x^2)y"-2xy'+n(n+1)y=0 using Power Series Method


1
Expert's answer
2021-12-24T05:09:53-0500

Replacing 'n' given in equation with 'a' and solving.

(1x2)y2xy+by=0 with b=a(a+1)\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+b y=0 \text { with } b=a(a+1)

When x is small, this is y+by=0y^{\prime \prime}+b y=0 which has solutions y=usin(xb)+vcos(xb)y=u \sin (x \sqrt{b})+v \cos (x \sqrt{b}) . So, this seems like what the solutions look like.


Proceeding mechanically, let y(x)=n=0anxn=a0+a1x+n=2anxny(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+\sum_{n=2}^{\infty} a_{n} x^{n} . The reason for this will appear later.

xy(x)=xn=1nanxn1=n=1nanxn=a1x+n=2nanxn=(1x2)n=2n(n1)anxn2=n=2n(n1)anxn2n2n(n1)anxn=n0(n+2)(n+1)an+2xnn2n(n1)anxn=2a2+6a3x+n=2(n(n1)an(n+2)(n+1)an+2)xn\begin{aligned} x y^{\prime}(x) &=x \sum_{n=1}^{\infty} n a_{n} x^{n-1} \\ &=\sum_{n=1}^{\infty} n a_{n} x^{n} \\ &=a_{1} x+\sum_{n=2}^{\infty} n a_{n} x^{n} \\ &=\left(1-x^{2}\right) \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} \\ &=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n-2}^{\infty} n(n-1) a_{n} x^{n} \\ &=\sum_{n-0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-\sum_{n-2}^{\infty} n(n-1) a_{n} x^{n} \\ &=2 a_{2}+6 a_{3} x+\sum_{n=2}^{\infty}\left(n(n-1) a_{n}-(n+2)(n+1) a_{n+2}\right) x^{n} \end{aligned}


Adding these up, and separating the terms for n<2,

0=(1x2)y2xy+by=2a2+6a3x2a1x+b(2a0+6a1x)+n=2(n(n1)an(n+2)(n+1)an+22nan+ban)xn=2(a2+ba0)+2x(6a32a1+6ba1)+n=2((n(n1)2n+b)an(n+2)(n+1)an+2)xn=2(a2+ba0)+2x(6a32a1(13b))+n=2((n(n3)+b)an(n+2)(n+1)an+2)xn\begin{gathered} 0=\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+b y \\ =2 a_{2}+6 a_{3} x-2 a_{1} x+b\left(2 a_{0}+6 a_{1} x\right)+\sum_{n=2}^{\infty}\left(n(n-1) a_{n}-(n+2)(n+1) a_{n+2}-2 n a_{n}\right. \\ \left.+b a_{n}\right) x^{n} \\ =2\left(a_{2}+b a_{0}\right)+2 x\left(6 a_{3}-2 a_{1}+6 b a_{1}\right)+ \\ \sum_{n=2}^{\infty}\left((n(n-1)-2 n+b) a_{n}-(n+2)(n+1) a_{n+2}\right) x^{n} \\ =2\left(a_{2}+b a_{0}\right)+2 x\left(6 a_{3}-2 a_{1}(1-3 b)\right)+\sum_{n=2}^{\infty}\left((n(n-3)+b) a_{n}-(n+2)(n+1) a_{n+2}\right) x^{n} \end{gathered}

Equating the coefficients to zero,

a2+ba0=0 or a2=ba0;0=6a32a1+6ba1=6a32a1(13b) or a3=a1(13b); and, for n2,0=(n(n3)+b)an(n+2)(n+1)an+2 or an+2=n(n3)+b(n+2)(n+1)an. From this, we see that there are two independent solutions: One with a0=0 (the odd solution)  and one with a1=0 (the even solution).  We also see that if b=13, the odd solution is just a1x/3, since all the higher odd coefficients are  zero.  Similarly, if b=n(n3) for some n, the even solution is a polynomial, since an+2=0 for the n such that b=n(n3) and all greater even n.\begin{aligned} &a_{2}+b a_{0}=0 \text { or } a_{2}=-b a_{0} ; \\ &0=6 a_{3}-2 a_{1}+6 b a_{1}=6 a_{3}-2 a_{1}(1-3 b) \text { or } a_{3}=a_{1}\left(\frac{1}{3}-b\right) ; \\ &\text { and, for } n \geq 2,0=(n(n-3)+b) a_{n}-(n+2)(n+1) a_{n+2} \text { or } a_{n+2}=\frac{n(n-3)+b}{(n+2)(n+1)} a_{n} . \\ &\text { From this, we see that there are two independent solutions: One with } a_{0}=0 \text { (the odd solution) } \\ &\text { and one with } a_{1}=0 \text { (the even solution). } \\ &\text { We also see that if } b=\frac{1}{3}, \text { the odd solution is just } a_{1} x / 3, \text { since all the higher odd coefficients are } \\ &\text { zero. } \\ &\text { Similarly, if } b=-n(n-3) \text { for some } n, \text { the even solution is a polynomial, since } a_{n+2}=0 \text { for the } n \\ &\text { such that } b=n(n-3) \text { and all greater even } n . \end{aligned}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS