Question #277396

(x^3 - x)dy/dx - (3x^2 - 1)y = x^5 - 2x^3 + x , y(1) = 1


1
Expert's answer
2021-12-09T14:45:41-0500
y3x21x3xy=x4x212x2x21+1x21y'-\dfrac{3x^2-1}{x^3-x}y=\dfrac{x^4}{x^2-1}-\dfrac{2x^2}{x^2-1}+\dfrac{1}{x^2-1}

Integrating factor


μ(x)=e3x21x3xdx=1x3x\mu(x)=e^{-\int\tfrac{3x^2-1}{x^3-x}dx}=\dfrac{1}{x^3-x}

1x3xy3x21(x3x)2y\dfrac{1}{x^3-x}y'-\dfrac{3x^2-1}{(x^3-x)^2}y

=x3(x21)22x(x21)2+1x(x21)2=\dfrac{x^3}{(x^2-1)^2}-\dfrac{2x}{(x^2-1)^2}+\dfrac{1}{x(x^2-1)^2}

(1x3xy)=x42x2+1x(x21)2(\dfrac{1}{x^3-x}y)'=\dfrac{x^4-2x^2+1}{x(x^2-1)^2}

(1x3xy)=(x21)2x(x21)2(\dfrac{1}{x^3-x}y)'=\dfrac{(x^2-1)^2}{x(x^2-1)^2}

(1x3xy)=1x(\dfrac{1}{x^3-x}y)'=\dfrac{1}{x}

Integrate


1x3xy=1xdx\dfrac{1}{x^3-x}y=\int \dfrac{1}{x}dx

1x3xy=ln(x)+c1\dfrac{1}{x^3-x}y=\ln (|x|)+c_1

y=(x3x)ln(x)+c1(x3x)y=(x^3-x)\ln (x)+c_1(x^3-x)



y(1)=1y(1) = 1


1=(11)(0)+c1(11)1=(1-1)(0)+c_1(1-1)

1=0,False1=0, False

Therefore the given IVP does not have solution.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS