Question #276480

Find the general integral of the linear p.d.e



1) Px(x+y) =qy(x+y) - (x-y) (2x+2y+z)


2) x(x^2+3y^2) p - y(3x^2+y^2) q=2z(y^2-x^2)


3) (y+zx) p - (x+yz) q=x^2-y^2

1
Expert's answer
2021-12-07T13:09:22-0500

1)

dxx(x+y)=dyy(x+y)=dz(xy)(2x+2y+z)\frac{dx}{x(x+y)}=-\frac{dy}{y(x+y)}=-\frac{dz}{(x-y) (2x+2y+z)}


dx/x+dy/y=0dx/x+dy/y=0

lnx+lny=lnc1lnx+lny=lnc_1

xy=c1xy=c_1


dx+dyx+y=dz2(x+y)+z\frac{dx+dy}{x+y}=\frac{-dz}{2(x+y)+z}


let u=x+y,z=tuu=x+y,z=tu , then:

z=tu+t=2u+tuu=2tz'=t'u+t=-\frac{2u+tu}{u}=-2-t


dt2(t+1)=du/u-\frac{dt}{2(t+1)}=du/u


ln(t+1)/2=lnu+lnc-ln(t+1)/2=lnu+lnc

1t+1=cu\frac{1}{\sqrt{t+1}}=cu


ut+1=(x+y)zx+y+1=c2u\sqrt{t+1}=(x+y)\sqrt{\frac{z}{x+y}+1}=c_2


F(c1,c2)=F(xy,(x+y)zx+y+1)=0F(c_1,c_2)=F(xy,(x+y)\sqrt{\frac{z}{x+y}+1})=0


2)

dxx(x2+3y2)=dyy(3x2+y2)=dz2z(y2x2)\frac{dx}{ x(x^2+3y^2)}=-\frac{dy}{y(3x^2+y^2)}=\frac{dz}{2z(y^2-x^2)}


dx/x+dy/y=dz/zdx/x+dy/y=dz/z

lnx+lny=lnz+lnc1lnx+lny=lnz+lnc_1

xy/z=c1xy/z=c_1


y(3x2+y2)x(x2+3y2)=dydx-\frac{y(3x^2+y^2)}{ x(x^2+3y^2)}=\frac{dy}{dx}


y=tx,y=tx+ty=tx,y'=t'x+t


tx+t=t(3+t2)1+3t2t'x+t=-\frac{t(3+t^2)}{1+3t^2}


tx=3t+t3+t+3t31+3t2t'x=-\frac{3t+t^3+t+3t^3}{1+3t^2}


1+3t2t3+tdt=4dxx\frac{1+3t^2}{t^3+t}dt=-\frac{4dx}{x}


ln(t3+t)=4lnx+lnc2ln(t^3+t)=-4lnx+lnc_2

x(t3+t)=x((y/x)3+y/x)=c2x(t^3+t)=x((y/x)^3+y/x)=c_2

y3/x2+y=c2y^3/x^2+y=c_2


F(c1,c2)=F(xy/z,y3/x2+y)=0F(c_1,c_2)=F(xy/z,y^3/x^2+y )=0


3)

dxy+zx=dyx+yz=dzx2y2\frac{dx}{y+zx}=-\frac{dy}{x+yz}=\frac{dz}{x^2-y^2}


ydx+xdy+dz=0ydx+xdy+dz=0

xy+z2/2=c1xy+z^2/2=c_1


xdx+ydyz(x2y2)=dzx2y2\frac{xdx+ydy}{z(x^2-y^2)}=\frac{dz}{x^2-y^2}


x2+y2z2=c2x^2+y^2-z^2=c_2


F(c1,c2)=F(xy+z2/2,x2+y2z2)=0F(c_1,c_2)=F(xy+z^2/2, x^2+y^2-z^2)=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS