Question #275244

Solve differential equation

(D^3-6D’D+11D’^2D-6D’)z=cos(2x+y)+e^(2x+y)-y


1
Expert's answer
2021-12-06T16:49:25-0500

(D36DD+11D2D6D)z=cos(2x+y)+e2x+yy(D^3-6D’D+11D’^2D-6D’)z=cos(2x+y)+e^{2x+y}-y


auxillary equation:

m36m+11m6=m3+5m6=0m^3-6m+11m-6=m^3+5m-6=0

(m1)(m2+m+6)=0(m-1)(m^2+m+6)=0


complementary function:

C.F.=f1(y+x)+crearx+bryC.F.=f_1(y+x)+\sum c_re^{a_rx+b_ry}

where

ar2+br+6=0a_r^2+b_r+6=0

then:

C.F.=f1(y+x)+crearx(6+ar2)y=f1(y+x)+e6ycrear(xary)C.F.=f_1(y+x)+\sum c_re^{a_rx-(6+a_r^2)y}=f_1(y+x)+e^{-6y}\sum c_re^{a_r(x-a_ry)}


particular Integral:

P.I.1=e2x+yD36DD+11D2D6DP.I._1=\frac{e^{2x+y}}{D^3-6D’D+11D’^2D-6D’} (replace D by 2 and D' by 1)


=e2x+y812+226=e2x+y12=\frac{e^{2x+y}}{8-12+22-6}=\frac{e^{2x+y}}{12}


P.I.2=cos(2x+y)D36DD+11D2D6DP.I._2=\frac{cos(2x+y)}{D^3-6D’D+11D’^2D-6D’} (replace D2=-a2=-4,DD'=-ab=-2,D'2=-b2=-1)


=cos(2x+y)4D+1211D6D=cos(2x+y)15D+126D=cos(2x+y)/15D+0.4D0.8=\frac{cos(2x+y)}{-4D+12-11D-6D'}=\frac{cos(2x+y)}{-15D+12-6D'}=-\frac{cos(2x+y)/15}{D+0.4D'-0.8}


1DmDF(x,y)=F(x,cmx)dx\frac{1}{D-mD'}F(x,y)=\int F(x,c-mx)dx


where c is replaced by y+mx after integration

then:


P.I.2=cos(2x+y)/15D+0.4D0.8=115cos(2x+c+0.4x)dxP.I._2=-\frac{cos(2x+y)/15}{D+0.4D'-0.8}=-\frac{1}{15}\intop cos(2x+c+0.4x)dx


=sin(2.4x+c)152.4=sin(2x+y)36=-\frac{sin(2.4x+c)}{15\cdot2.4}=-\frac{sin(2x+y)}{36}


P.I.3=yD36DD+11D2D6D=1D3(16DD2+11D2D2Dd3)1y=P.I._3=\frac{-y}{D^3-6D’D+11D’^2D-6D’}=-\frac{1}{D^3}(1-\frac{6D'}{D^2}+\frac{11D'^2}{D^2}-\frac{D'}{d^3})^{-1}y=


=1D3(1+6DD2...)y=1D3(y+6D2)=1D3(y+3x2)=(yx3/3+x5/20)=-\frac{1}{D^3}(1+\frac{6D'}{D^2}-...)y=-\frac{1}{D^3}(y+\frac{6}{D^2})=-\frac{1}{D^3}(y+3x^2)=-(yx^3/3+x^5/20)


z=C.F.+P.I.=z=C.F.+P.I.=


=f1(y+x)+e6ycrear(xary)+e2x+y12sin(2x+y)36(yx3/3+x5/20)=f_1(y+x)+e^{-6y}\sum c_re^{a_r(x-a_ry)}+\frac{e^{2x+y}}{12}-\frac{sin(2x+y)}{36}-(yx^3/3+x^5/20)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS