1.
2 k 2 − 5 k − 3 = 0 2k^2-5k-3=0 2 k 2 − 5 k − 3 = 0
k = 5 ± 25 + 24 4 k=\frac{5\pm \sqrt{25+24}}{4} k = 4 5 ± 25 + 24
k 1 = − 0.5 , k 2 = 3 k_1=-0.5,k_2=3 k 1 = − 0.5 , k 2 = 3
y = c 1 e − 0.5 x + c 2 e 3 x y=c_1e^{-0.5x}+c_2e^{3x} y = c 1 e − 0.5 x + c 2 e 3 x
2.
9 k 2 − 6 k + 1 = 0 9k^2-6k+1=0 9 k 2 − 6 k + 1 = 0
k = 6 ± 36 + 36 18 k=\frac{6\pm \sqrt{36+36}}{18} k = 18 6 ± 36 + 36
k 1 , 2 = 1 / 3 k_{1,2}=1/3 k 1 , 2 = 1/3
y = c 1 e x / 3 + c 2 x e x / 3 y=c_1e^{x/3}+c_2xe^{x/3} y = c 1 e x /3 + c 2 x e x /3
3.
x 4 − 2 x 2 = 0 x^4-2x^2=0 x 4 − 2 x 2 = 0
x 1 , 2 = 0 x_{1,2}=0 x 1 , 2 = 0
x 3 , 4 = ± 2 x_{3,4}=\pm \sqrt 2 x 3 , 4 = ± 2
y = c 1 + c 2 x + c 3 e 2 x + c 4 e − 2 x y=c_1+c_2x+c_3e^{\sqrt2x}+c_4e^{-\sqrt2x} y = c 1 + c 2 x + c 3 e 2 x + c 4 e − 2 x
4.
x 5 + 8 x 3 + 16 x = 0 x^5+8x^3+16x=0 x 5 + 8 x 3 + 16 x = 0
x ( x 4 + 8 x 2 + 16 ) = 0 x(x^4+8x^2+16)=0 x ( x 4 + 8 x 2 + 16 ) = 0
x 2 = − 8 ± 64 − 64 2 = − 4 x^2=\frac{-8\pm \sqrt{64-64}}{2}=-4 x 2 = 2 − 8 ± 64 − 64 = − 4
x 1 = 0 , x 2 , 3 = 2 i , x 4 , 5 = − 2 i x_1=0,x_{2,3}=2i,x_{4,5}=-2i x 1 = 0 , x 2 , 3 = 2 i , x 4 , 5 = − 2 i
y = c 1 + c 2 c o s 2 x + c 3 s i n 2 x + x ( c 4 c o s 2 x + c 5 s i n 2 x ) y=c_1+c_2cos2x+c_3sin2x+x(c_4cos2x+c_5sin2x) y = c 1 + c 2 cos 2 x + c 3 s in 2 x + x ( c 4 cos 2 x + c 5 s in 2 x )
5.
x 3 + 8 = 0 x^3+8=0 x 3 + 8 = 0
( x + 2 ) ( x 2 − 2 x + 4 ) = 0 (x+2)(x^2-2x+4)=0 ( x + 2 ) ( x 2 − 2 x + 4 ) = 0
x 1 = − 2 x_{1}=-2 x 1 = − 2
x 2 − 2 x + 4 = 0 x^2-2x+4=0 x 2 − 2 x + 4 = 0
x 2 , 3 = 2 ± 4 − 16 2 = 1 ± i 3 x_{2,3}=\frac{2\pm \sqrt{4-16}}{2}=1\pm i\sqrt 3 x 2 , 3 = 2 2 ± 4 − 16 = 1 ± i 3
y = c 1 e − 2 x + e x ( c 2 c o s ( x 3 ) + c 3 s i n ( x 3 ) ) y=c_1e^{-2x}+e^x(c_2cos(x\sqrt 3)+c_3sin(x\sqrt 3)) y = c 1 e − 2 x + e x ( c 2 cos ( x 3 ) + c 3 s in ( x 3 ))
Comments