Question #275243

find the general solution of the homogeneous linear equations





1.(2D²-5D-3)y=0





2. (9D²-6D+1)y=0





3. (D⁴-2D²)y=0


4. (D⁵+8D³+16D)y=0


5. (D³+8)y=0


1
Expert's answer
2021-12-07T12:22:02-0500

1.

2k25k3=02k^2-5k-3=0

k=5±25+244k=\frac{5\pm \sqrt{25+24}}{4}

k1=0.5,k2=3k_1=-0.5,k_2=3

y=c1e0.5x+c2e3xy=c_1e^{-0.5x}+c_2e^{3x}


2.

9k26k+1=09k^2-6k+1=0

k=6±36+3618k=\frac{6\pm \sqrt{36+36}}{18}

k1,2=1/3k_{1,2}=1/3

y=c1ex/3+c2xex/3y=c_1e^{x/3}+c_2xe^{x/3}


3.

x42x2=0x^4-2x^2=0

x1,2=0x_{1,2}=0

x3,4=±2x_{3,4}=\pm \sqrt 2

y=c1+c2x+c3e2x+c4e2xy=c_1+c_2x+c_3e^{\sqrt2x}+c_4e^{-\sqrt2x}


4.

x5+8x3+16x=0x^5+8x^3+16x=0

x(x4+8x2+16)=0x(x^4+8x^2+16)=0

x2=8±64642=4x^2=\frac{-8\pm \sqrt{64-64}}{2}=-4

x1=0,x2,3=2i,x4,5=2ix_1=0,x_{2,3}=2i,x_{4,5}=-2i

y=c1+c2cos2x+c3sin2x+x(c4cos2x+c5sin2x)y=c_1+c_2cos2x+c_3sin2x+x(c_4cos2x+c_5sin2x)


5.

x3+8=0x^3+8=0

(x+2)(x22x+4)=0(x+2)(x^2-2x+4)=0

x1=2x_{1}=-2


x22x+4=0x^2-2x+4=0

x2,3=2±4162=1±i3x_{2,3}=\frac{2\pm \sqrt{4-16}}{2}=1\pm i\sqrt 3


y=c1e2x+ex(c2cos(x3)+c3sin(x3))y=c_1e^{-2x}+e^x(c_2cos(x\sqrt 3)+c_3sin(x\sqrt 3))


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS