The corresponding homogeneous differential equation
y′′−8y′+20y=0 The auxiliary equation
r2−8r+20=0
(r−4)2=−4
r=4±2iThe general solution of the corresponding homogeneous differential equation is
yh=c1e4xcos(2x)+c1e4xsin(2x) Find the particular solution of the nonhomogeneous differential equation
yp=Ax2+Bx+C+(Dx+E)ex
yp′=2Ax+B+(Dx+E+D)ex
yp′′=2A+(Dx+E+2D)ex Substitute
2A+(Dx+E+2D)ex
−8(2Ax+B+(Dx+E+D)ex)
+20(Ax2+Bx+C+(Dx+E)ex)
=100x2−26xex
x2:20A=100=>A=5
x1:−16A+20B=0=>B=4
x0:2A−8B+20C=0=>C=1011
xex:D−8D+20D=−26=>D=−2
ex:E+2D−8E−8D+20E=0=>E=−1312 Then
yp=5x2+4x+1011−2xex−1312exThe general solution of the given nonhomogeneous differential equation is
y=c1e4xcos(2x)+c1e4xsin(2x)
+5x2+4x+1011−2xex−1312ex
Comments