Question #273163

y''-8y'+20y=100x2-26xex solve the given differential equation by undetermined cofficient


1
Expert's answer
2021-11-30T06:14:21-0500

The corresponding homogeneous differential equation


y8y+20y=0y''-8y'+20y=0

The auxiliary equation


r28r+20=0r^2-8r+20=0

(r4)2=4(r-4)^2=-4

r=4±2ir=4\pm2i

The general solution of the corresponding homogeneous differential equation is


yh=c1e4xcos(2x)+c1e4xsin(2x)y_h=c_1e^{4x}\cos(2x)+c_1e^{4x}\sin(2x)

Find the particular solution of the nonhomogeneous differential equation


yp=Ax2+Bx+C+(Dx+E)exy_p=Ax^2+Bx+C+(Dx+E)e^x

yp=2Ax+B+(Dx+E+D)exy_p'=2Ax+B+(Dx+E+D)e^x

yp=2A+(Dx+E+2D)exy_p''=2A+(Dx+E+2D)e^x

Substitute


2A+(Dx+E+2D)ex2A+(Dx+E+2D)e^x

8(2Ax+B+(Dx+E+D)ex)-8(2Ax+B+(Dx+E+D)e^x)

+20(Ax2+Bx+C+(Dx+E)ex)+20(Ax^2+Bx+C+(Dx+E)e^x)

=100x226xex=100x^2-26xe^x

x2:20A=100=>A=5x^2:20A=100=>A=5

x1:16A+20B=0=>B=4x^1:-16A+20B=0=>B=4

x0:2A8B+20C=0=>C=1110x^0:2A-8B+20C=0=>C=\dfrac{11}{10}

xex:D8D+20D=26=>D=2xe^x:D-8D+20D=-26=>D=-2

ex:E+2D8E8D+20E=0=>E=1213e^x:E+2D-8E-8D+20E=0=>E=-\dfrac{12}{13}

Then


yp=5x2+4x+11102xex1213exy_p=5x^2+4x+\dfrac{11}{10}-2xe^x-\dfrac{12}{13}e^x

The general solution of the given nonhomogeneous differential equation is


y=c1e4xcos(2x)+c1e4xsin(2x)y=c_1e^{4x}\cos(2x)+c_1e^{4x}\sin(2x)


+5x2+4x+11102xex1213ex+5x^2+4x+\dfrac{11}{10}-2xe^x-\dfrac{12}{13}e^x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS