i)
y′′+ey(y′)3=0
y′=u
y′′=uu′
uu′+eyu3=0
u′+eyu2=0
du/u2=−eydy
1/u=ey+c
dx=(ey+c)dy
x=ey+cy+c1
ii)
y′′+p(x)y′+q(x)y=0
y′′+2y′/x+y=0
y2=v(x)y1=vsinx/x
v(x)=c∫y121e−∫p(x)dxdx=c∫sin2xx2e−2lnxdx=
=c∫sin2x1dx=c(−cotx)+k
v(x)=cotx
y2=cotxsinx/x=cosx/x
y(x)=c1sinx/x+c2cosx/x
iii)
y′′−2xy′/(1−x2)+2y/(1−x2)=0
v(x)=c∫y121e−∫p(x)dxdx=c∫x21e−ln(x2−1)dx=c∫x2(x2−1)1dx=
=c(2lnx+1x−1+x1)+k
v(x)=2lnx+1x−1+x1
y2=x(2lnx+1x−1+x1)=2xlnx+1x−1+1
y(x)=c1x+c2(2xlnx+1x−1+1)
iv)
y=xk
(xk)′′=k(k−1)xk−2
(4k2−4k−3)xk=0
4k2−4k−3=0
k1=−1/2,k2=3/2
y1=c1/x,y2=c2x3/2
y(x)=y1+y2=c1/x+c2x3/2
y(1)=c1+c2=3
y′(x)=−c1/(2xx)+3c2x1/2/2
y′(1)=−c1/2+3c2/2=2.5
c2−3+3c2=5
c2=2,c1=3−c2=1
y(x)=1/x+2x3/2
Comments