i)
𝑦 ′ ′ + 𝑒 𝑦 ( 𝑦 ′ ) 3 = 0 𝑦'' + 𝑒^𝑦(𝑦')^3 = 0 y ′′ + e y ( y ′ ) 3 = 0
y ′ = u y'=u y ′ = u
y ′ ′ = u u ′ y''=uu' y ′′ = u u ′
u u ′ + e y u 3 = 0 uu'+e^yu^3=0 u u ′ + e y u 3 = 0
u ′ + e y u 2 = 0 u'+e^yu^2=0 u ′ + e y u 2 = 0
d u / u 2 = − e y d y du/u^2=-e^ydy d u / u 2 = − e y d y
1 / u = e y + c 1/u=e^y+c 1/ u = e y + c
\frac{}{} d x = ( e y + c ) d y dx=(e^y+c)dy d x = ( e y + c ) d y
x = e y + c y + c 1 x=e^y+cy+c_1 x = e y + cy + c 1
ii)
y ′ ′ + p ( x ) y ′ + q ( x ) y = 0 y''+p(x)y'+q(x)y=0 y ′′ + p ( x ) y ′ + q ( x ) y = 0
y ′ ′ + 2 y ′ / x + y = 0 y''+2y'/x+y=0 y ′′ + 2 y ′ / x + y = 0
y 2 = v ( x ) y 1 = v s i n x / x y_2=v(x)y_1=vsinx/x y 2 = v ( x ) y 1 = v s in x / x
v ( x ) = c ∫ 1 y 1 2 e − ∫ p ( x ) d x d x = c ∫ x 2 s i n 2 x e − 2 l n x d x = v(x)=c\int\frac{1}{y_1^2}e^{-\int p(x)dx}dx=c\int\frac{x^2}{sin^2x}e^{-2lnx}dx= v ( x ) = c ∫ y 1 2 1 e − ∫ p ( x ) d x d x = c ∫ s i n 2 x x 2 e − 2 l n x d x =
= c ∫ 1 s i n 2 x d x = c ( − c o t x ) + k =c\int\frac{1}{sin^2x}dx=c(-cotx)+k = c ∫ s i n 2 x 1 d x = c ( − co t x ) + k
v ( x ) = c o t x v(x)=cotx v ( x ) = co t x
y 2 = c o t x s i n x / x = c o s x / x y_2=cotxsinx/x=cosx/x y 2 = co t x s in x / x = cos x / x
y ( x ) = c 1 s i n x / x + c 2 c o s x / x y(x)=c_1sinx/x+c_2cosx/x y ( x ) = c 1 s in x / x + c 2 cos x / x
iii)
𝑦 ′ ′ − 2 𝑥 𝑦 ′ / ( 1 − 𝑥 2 ) + 2 𝑦 / ( 1 − 𝑥 2 ) = 0 𝑦 ''− 2𝑥𝑦 '/(1 − 𝑥 ^2 )+ 2𝑦/(1 − 𝑥^ 2 ) = 0 y ′′ − 2 x y ′ / ( 1 − x 2 ) + 2 y / ( 1 − x 2 ) = 0
v ( x ) = c ∫ 1 y 1 2 e − ∫ p ( x ) d x d x = c ∫ 1 x 2 e − l n ( x 2 − 1 ) d x = c ∫ 1 x 2 ( x 2 − 1 ) d x = v(x)=c\int\frac{1}{y_1^2}e^{-\int p(x)dx}dx=c\int\frac{1}{x^2}e^{-ln(x^2-1)}dx=c\int\frac{1}{x^2(x^2-1)}dx= v ( x ) = c ∫ y 1 2 1 e − ∫ p ( x ) d x d x = c ∫ x 2 1 e − l n ( x 2 − 1 ) d x = c ∫ x 2 ( x 2 − 1 ) 1 d x =
= c ( l n x − 1 x + 1 2 + 1 x ) + k =c(\frac{ln\frac{x-1}{x+1}}{2}+\frac{1}{x})+k = c ( 2 l n x + 1 x − 1 + x 1 ) + k
v ( x ) = l n x − 1 x + 1 2 + 1 x v(x)=\frac{ln\frac{x-1}{x+1}}{2}+\frac{1}{x} v ( x ) = 2 l n x + 1 x − 1 + x 1
y 2 = x ( l n x − 1 x + 1 2 + 1 x ) = x l n x − 1 x + 1 2 + 1 y_2=x(\frac{ln\frac{x-1}{x+1}}{2}+\frac{1}{x})=\frac{xln\frac{x-1}{x+1}}{2}+1 y 2 = x ( 2 l n x + 1 x − 1 + x 1 ) = 2 x l n x + 1 x − 1 + 1
y ( x ) = c 1 x + c 2 ( x l n x − 1 x + 1 2 + 1 ) y(x)=c_1x+c_2(\frac{xln\frac{x-1}{x+1}}{2}+1) y ( x ) = c 1 x + c 2 ( 2 x l n x + 1 x − 1 + 1 )
iv)
y = x k y=x^k y = x k
( x k ) ′ ′ = k ( k − 1 ) x k − 2 (x^k)''=k(k-1)x^{k-2} ( x k ) ′′ = k ( k − 1 ) x k − 2
( 4 k 2 − 4 k − 3 ) x k = 0 (4k^2-4k-3)x^k=0 ( 4 k 2 − 4 k − 3 ) x k = 0
4 k 2 − 4 k − 3 = 0 4k^2-4k-3=0 4 k 2 − 4 k − 3 = 0
k 1 = − 1 / 2 , k 2 = 3 / 2 k_1=-1/2,k_2=3/2 k 1 = − 1/2 , k 2 = 3/2
y 1 = c 1 / x , y 2 = c 2 x 3 / 2 y_1=c_1/\sqrt x,y_2=c_2x^{3/2} y 1 = c 1 / x , y 2 = c 2 x 3/2
y ( x ) = y 1 + y 2 = c 1 / x + c 2 x 3 / 2 y(x)=y_1+y_2=c_1/\sqrt x+c_2x^{3/2} y ( x ) = y 1 + y 2 = c 1 / x + c 2 x 3/2
y ( 1 ) = c 1 + c 2 = 3 y(1)=c_1+c_2=3 y ( 1 ) = c 1 + c 2 = 3
y ′ ( x ) = − c 1 / ( 2 x x ) + 3 c 2 x 1 / 2 / 2 y'(x)=-c_1/(2x\sqrt x)+3c_2x^{1/2}/2 y ′ ( x ) = − c 1 / ( 2 x x ) + 3 c 2 x 1/2 /2
𝑦 ′ ( 1 ) = − c 1 / 2 + 3 c 2 / 2 = 2.5 𝑦 '(1) =-c_1/2+3c_2/2= 2.5 y ′ ( 1 ) = − c 1 /2 + 3 c 2 /2 = 2.5
c 2 − 3 + 3 c 2 = 5 c_2-3+3c_2=5 c 2 − 3 + 3 c 2 = 5
c 2 = 2 , c 1 = 3 − c 2 = 1 c_2=2,c_1=3-c_2=1 c 2 = 2 , c 1 = 3 − c 2 = 1
y ( x ) = 1 / x + 2 x 3 / 2 y(x)=1/\sqrt x+2x^{3/2} y ( x ) = 1/ x + 2 x 3/2
Comments