y=k(lx−x2)
Boundary conditions:
1. y(0,t)=0 For all t>0
2. y(1,t)=0 For all t>0
3. dtdy(y,0)=0
4. y(x,0)=k(lx−x2)
The displacement y(x,t) is given by the equation
dt2d2y=a2dx2d2y ..........(i)
The suitable solution of (i) is given by
y(x,t)=(Acos lx+Bsin lx)(Ccos lat+Dsin lat)......(ii)
Using the first and second boundary conditions in (ii) we get,
A=0 and λ=lnπ
∴y(x,t)=Bsinlnπx(Ccoslnπat+Dsinlnπat.........(iii)
Now dtdy=Bsinlnπx(−Csinlnπat⋅lnπa+Dcoslnπat⋅lnπa)
Using third boundary condition,
0=BsinlnπxDlnπa
Here, B can not be 0, hence,D=0
Thus equation (iii) becomes;
y(x,t)=Bsinlnπx⋅Ccoslnπat
=B1sinlnπx⋅coslnπat ,where B1=Bc
The most general solution is;
y(x,t)=n=1∑∞Bsinlnπxcoslnπat ....(iv)
Using the forth boundary condition;
k(lx−x2)=n=1∑∞Bsinlnπx .....(v)
The RHS of (v) is the half range Fourier sine series of the LHS function
∴Bn=l2∫0lf(x)⋅sinlnπxdx
=l2k∫0l(lx−x2)d(lnπ−coslnπx)
=l2k[(lx−x2)d(lnπ−coslnπx)−(l−2x)(l2n2π2−sinlnπx)+(−2)(l3n3π3coslnπx]0l
=l2k(l3n3π3−2cosnπ)+(l3n3π32)
=l2k⋅n3π32l3(1−cosnπ)
i.e,Bn=n3π34kl2(1−(−1)n) or Bn={n3π38kl20if n is oddif n is even
∴y(x,t)=n=odd∑∞n3π38kl2coslnπatsinlnπx
Or y(x,t)=π38kn=1∑∞(2n−1)31cosl(2n−1)πatsinl(2n−1)πx
Comments