Question #272306

A string is stretched and fastened to two points x = 0 and x = l apart. Motion is started by



displacing the string into the form y = k(lx − x2



) from which it is released at time t = 0. Find



the displacement of any point on the string at a distance of x from one end at time t.



Hint: From this problem, we have the following boundary conditions:



y(0,t) = 0 for all t > 0



y(l,t) = 0 for all t > 0



∂y



∂t



(x, 0) = 0 (initial velocity is zero)



y(x, 0) = k(lx − x2



)

1
Expert's answer
2021-11-30T12:49:00-0500

y=k(lxx2)y=k(lx-x^2)

Boundary conditions:

1. y(0,t)=0y(0,t)=0 For all t>0

2. y(1,t)=0y(1,t)=0 For all t>0

3. dydt(y,0)=0\frac{dy}{dt}(y,0)=0

4. y(x,0)=k(lxx2)y(x,0)=k(lx-x^2)

The displacement y(x,t) is given by the equation

d2ydt2=a2d2ydx2\frac{d^2y}{dt^2}=a^2\frac{d^2y}{dx^2} ..........(i)

The suitable solution of (i) is given by

y(x,t)=(Acos lx+Bsin lx)(Ccos lat+Dsin lat)y(x,t)=(Acos\ lx+Bsin\ lx)(Ccos\ lat+Dsin\ lat)......(ii)

Using the first and second boundary conditions in (ii) we get,

A=0 and λ=nπl\lambda=\frac{nπ}{l}

y(x,t)=Bsinnπxl(Ccosnπatl+Dsinnπatl.........(iii)\therefore y(x,t)=Bsin\frac{nπx}{l}(Ccos \frac{nπat}{l}+Dsin\frac{nπat}{l}.........(iii)

Now dydt=Bsinnπxl(Csinnπatlnπal+Dcosnπatlnπal)\frac{dy}{dt}=Bsin\frac{nπx}{l}(-Csin\frac{nπat}{l}\cdot\frac{nπa}{l}+Dcos\frac{nπat}{l}\cdot\frac{nπa}{l})

Using third boundary condition,

0=BsinnπxlDnπalBsin\frac{nπx}{l}D\frac{nπa}{l}

Here, B can not be 0, hence,D=0

Thus equation (iii) becomes;

y(x,t)=BsinnπxlCcosnπatly(x,t)=Bsin\frac{nπx}{l}\cdot Ccos\frac{nπat}{l}

=B1sinnπxlcosnπatl=B_1sin\frac{nπx}{l}\cdot cos\frac{nπat}{l} ,where B1=Bc

The most general solution is;

y(x,t)=n=1Bsinnπxlcosnπatly(x,t)=\displaystyle\sum_{n=1}^{\infty}Bsin\frac{nπx}{l} cos\frac{nπat}{l} ....(iv)

Using the forth boundary condition;

k(lxx2)=n=1Bsinnπxlk(lx-x^2)=\displaystyle\sum_{n=1}^{\infty}Bsin\frac{nπx}{l} .....(v)

The RHS of (v) is the half range Fourier sine series of the LHS function

Bn=2l0lf(x)sinnπxldx\therefore B_n=\frac{2}{l}\int_0^lf(x)\cdot sin\frac{nπx}{l}dx

=2kl0l(lxx2)d(cosnπxlnπl)=\frac{2k}{l}\int_0^l(lx-x^2)d(\frac{-cos\frac{nπx}{l}}{\frac{nπ}{l}})

=2kl[(lxx2)d(cosnπxlnπl)(l2x)(sinnπxln2π2l2)+(2)(cosnπxln3π3l3]0l=\frac{2k}{l}[(lx-x^2)d(\frac{-cos\frac{nπx}{l}}{\frac{nπ}{l}})-(l-2x)(\frac{-sin\frac{nπx}{l}}{\frac{n^2π^2}{l^2}})+(-2)(\frac{cos\frac{nπx}{l}}{\frac{n^3π^3}{l^3}}]_0^l

=2kl(2cosnπn3π3l3)+(2n3π3l3)=\frac{2k}{l}(\frac{-2cosnπ}{\frac{n^3π^3}{l^3}})+(\frac{2}{\frac{n^3π^3}{l^3}})

=2kl2l3n3π3(1cosnπ)=\frac{2k}{l}\cdot\frac{2l^3}{n^3π^3}(1-cosnπ)

i.e,Bn=4kl2n3π3(1(1)n) or Bn={8kl2n3π3if n is odd0if n is eveni.e, B_n=\frac{4kl^2}{n^3π^3}(1-(-1)^n)\ or\ B_n= \begin{cases} \frac{8kl^2}{n^3π^3} &\text{if } n\ is\ odd \\ 0 &\text{if } n\ is\ even \end{cases}

y(x,t)=n=odd8kl2n3π3cosnπatlsinnπxl\therefore y(x,t)=\displaystyle\sum_{n=odd}^{\infty}\frac{8kl^2}{n^3π^3}cos\frac{nπat}{l}sin\frac{nπx}{l}

Or y(x,t)=8kπ3n=11(2n1)3cos(2n1)πatlsin(2n1)πxly(x,t)=\frac{8k}{π^3}\displaystyle\sum_{n=1}^{\infty}\frac{1}{(2n-1)^3}cos\frac{(2n-1)πat}{l}sin\frac{(2n-1)πx}{l}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS