Question #271617

((D-3D'-2)^3)z=6(e^2x)sin(3x+y)

1
Expert's answer
2021-11-28T16:54:21-0500

Complementary Function:

solution for ((D3D2)3)z=0((D-3D'-2)^3)z=0 :

C.F.=f(3xy)+xg(3xy)+x2h(3xy)C.F.=f(-3x-y)+xg(-3x-y)+x^2h(-3x-y)


Particular Integral:


P.I.=1(D3D2)36e2xsin(3x+y)=6e2x1(D+23D2)3sin(3x+y)=P.I.=\frac{1}{(D-3D'-2)^3}6e^{2x}sin(3x+y)=6e^{2x}\frac{1}{(D+2-3D'-2)^3}sin(3x+y)=


=6e2xx21D3Dsin(3x+y)=6e2xx313sin(3x+y)=2e2xx3sin(3x+y)=6e^{2x}x^2\frac{1}{D-3D'}sin(3x+y)=6e^{2x}x^3\frac{1}{3}sin(3x+y)=2e^{2x}x^3sin(3x+y)


z=C.F.+P.I.z=C.F.+P.I.


z=f(3xy)+xg(3xy)+x2h(3xy)+2e2xx3sin(3x+y)z=f(-3x-y)+xg(-3x-y)+x^2h(-3x-y)+2e^{2x}x^3sin(3x+y)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS