Complementary Function:
solution for ((D−3D′−2)3)z=0 :
C.F.=f(−3x−y)+xg(−3x−y)+x2h(−3x−y)
Particular Integral:
P.I.=(D−3D′−2)316e2xsin(3x+y)=6e2x(D+2−3D′−2)31sin(3x+y)=
=6e2xx2D−3D′1sin(3x+y)=6e2xx331sin(3x+y)=2e2xx3sin(3x+y)
z=C.F.+P.I.
z=f(−3x−y)+xg(−3x−y)+x2h(−3x−y)+2e2xx3sin(3x+y)
Comments