Question #271363

Find the isogonal trajectories of the family of curves x2+y2=c if θ=45°.

1
Expert's answer
2021-11-26T05:22:02-0500

The given family of curves are

x2+y2=cx^{2}+y^{2}=c

Differentiating w.r.t. xx , we get

2x+2y(dy/dx)=0x+y(dy/dx)=0...(i)2 x+2 y(d y / d x)=0\\ x+y(d y / d x)=0 ...(i)

Replacing

dydx by dydxtan451+dydxtan45=dydx11+dydx\frac{d y}{d x}\ by \ \frac{\frac{d y}{d x}-\tan 45^{\circ}}{1+\frac{d y}{d x} \tan 45^{\circ}}= \frac{\frac{d y}{d x}-1}{1+\frac{d y}{d x}}

in Eq. (i), we get

x+y(dydx11+dydx)=0x+y\left(\frac{\frac{d y}{d x}-1}{1+\frac{d y}{d x}}\right)=0

 

x(1+dydx)+y(dydx1)=0(x+y)dydx=(yx)dydx=yxy+x(ii)\begin{aligned} &x\left(1+\frac{d y}{d x}\right)+y\left(\frac{d y}{d x}-1\right)=0 \\ &\Rightarrow \quad(x+y) \frac{d y}{d x}=(y-x) \\ &\Rightarrow \quad \frac{d y}{d x}=\frac{y-x}{y+x} \quad \ldots(\mathrm{ii}) \end{aligned}

which is a homogeneous differential equation.

 Put y=vxdydx=v+xdvdxv+xdvdx=v1v+1xdvdx=v1v+1v=v1v2vv+1(v+1v2+1)dv=dxx\begin{aligned} &\text { Put } y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x} \\ &\Rightarrow \quad v+x \frac{d v}{d x}=\frac{v-1}{v+1} \\ &\Rightarrow \quad x \frac{d v}{d x}=\frac{v-1}{v+1}-v=\frac{v-1-v^{2}-v}{v+1} \\ &\Rightarrow \quad\left(\frac{v+1}{v^{2}+1}\right) d v=-\frac{d x}{x} \end{aligned}

Integrating, we get

12logv2+1+tan1v=c1logxlogx2+y2+tan1(yx)=c1\begin{aligned} &\frac{1}{2} \log \left|v^{2}+1\right|+\tan ^{-1} v=c_1-\log x \\ &\Rightarrow \quad \log \left|x^{2}+y^{2}\right|+\tan ^{-1}\left(\frac{y}{x}\right)=c_1 \end{aligned}

Which is the required isogonal trajectories of the given family of curves.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS