Solve the ODE xex2+ydx=ydy
xex2+ydx=dyxex2eydx=dyxex2dx=e−ydyIntegrating both side, we getputx2=t ⟹ 2xdx=dt12∫etdt=∫e−ydy12et+C=−e−yThis is the required answer.xe^{x^2+y}dx=dy\\ xe^{x^2}e^ydx=dy\\ xe^{x^2}dx=e^{-y}dy\\ \text{Integrating both side, we get}\\ put x^2=t\\ \implies 2xdx=dt\\ \frac{1}{2}\int e^tdt=\int e^{-y}dy\\ \frac{1}{2}e^t+C=-e^{-y}\\ \text{This is the required answer.}xex2+ydx=dyxex2eydx=dyxex2dx=e−ydyIntegrating both side, we getputx2=t⟹2xdx=dt21∫etdt=∫e−ydy21et+C=−e−yThis is the required answer.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments