Question #271253

Solve the ODE xex2+ydx=ydy


1
Expert's answer
2021-11-25T19:05:01-0500

xex2+ydx=dyxex2eydx=dyxex2dx=eydyIntegrating both side, we getputx2=t    2xdx=dt12etdt=eydy12et+C=eyThis is the required answer.xe^{x^2+y}dx=dy\\ xe^{x^2}e^ydx=dy\\ xe^{x^2}dx=e^{-y}dy\\ \text{Integrating both side, we get}\\ put x^2=t\\ \implies 2xdx=dt\\ \frac{1}{2}\int e^tdt=\int e^{-y}dy\\ \frac{1}{2}e^t+C=-e^{-y}\\ \text{This is the required answer.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS