Question #271015

xdy/dx+ (x+1) y = x³

1
Expert's answer
2021-11-30T17:11:49-0500

xdydx+(x+1)y=x3dydx+(1+1x)y=x2...(1)the integrating factor, I.F ise(1+1x)dx=ex+lnx=xexmultiply eq(1) through byxex.We have,xexdydx+xex(1+1x)y=x3exddx(xexy)=x3exIntegrating,yxex=x3ex+C...(2)By IBP, we haveyxex=x3ex3x2exdx=x3ex3x2ex=x3ex3[x2ex2xexdx]=x3ex3x2ex+6xexdx=x3ex3x2ex+6[xexexdx]=x3ex3x2ex+6xex6ex=ex(x33x2+6x6)Thus, from eq(2). We have,yxex=ex(x33x2+6x6)+Cy=ex(x33x2+6x6)xex+CxexHence,y(x)=Cxex+x23x+66xx \dfrac{dy}{dx} + (x + 1)y = x^3 \\ \dfrac{dy}{dx} + (1 + \dfrac{1}{x})y = x^2 \, . . . (1) \\ \text{the integrating factor, I.F is}\\ e^{\int{(1 + \frac{1}{x}) dx}}\\ = e^{x + \ln x} \\ = xe^x\\ \text{multiply eq(1) through by} \, xe^x. \text{We have,} \\ xe^x \dfrac{dy}{dx} + xe^x(1 + \dfrac{1}{x})y = x^3 e^x\\ \dfrac{d}{dx}(xe^xy) = x^3 e^x\\ Integrating,\\ yx e^x = \int x^3 e^x + C . . . (2) \\ \text{By IBP, we have}\\ yx e^x = x^3 e^x - \int 3x^2 e^x dx \\ = x^3 e^x - 3 \int x^2 e^x \\ = x^3 e^x - 3 [x^2 e^x - \int 2x e^x dx] \\ = x^3 e^x - 3x^2 e^x + 6 \int x e^x dx \\ = x^3 e^x - 3x^2 e^x + 6[x e^x - \int e^x dx] \\ = x^3 e^x - 3x^2 e^x + 6xe^x - 6e^x \\ = e^x(x^3 - 3x^2 + 6x - 6) \\ \text{Thus, from eq(2). We have,} \\ yxe^x = e^x(x^3 - 3x^2 + 6x - 6) + C \\ y = \dfrac{e^x(x^3 - 3x^2 + 6x - 6)}{xe^x} + \dfrac{C}{x}e^{-x} \\ Hence,\\ y(x) = \dfrac{C}{x}e^{-x} + x^2 - 3x + 6 - \dfrac{6}{x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS