xdxdy+(x+1)y=x3dxdy+(1+x1)y=x2...(1)the integrating factor, I.F ise∫(1+x1)dx=ex+lnx=xexmultiply eq(1) through byxex.We have,xexdxdy+xex(1+x1)y=x3exdxd(xexy)=x3exIntegrating,yxex=∫x3ex+C...(2)By IBP, we haveyxex=x3ex−∫3x2exdx=x3ex−3∫x2ex=x3ex−3[x2ex−∫2xexdx]=x3ex−3x2ex+6∫xexdx=x3ex−3x2ex+6[xex−∫exdx]=x3ex−3x2ex+6xex−6ex=ex(x3−3x2+6x−6)Thus, from eq(2). We have,yxex=ex(x3−3x2+6x−6)+Cy=xexex(x3−3x2+6x−6)+xCe−xHence,y(x)=xCe−x+x2−3x+6−x6
Comments