Question #271014

xdy/dx + (x+1) y = x³

1
Expert's answer
2021-12-28T11:32:22-0500

xdydx+(x+1)y=x3x\frac{dy}{dx}+(x+1)y=x^3

dydx+(x+1)xy=x2\frac{dy}{dx}+\frac{(x+1)}{x}y=x^2

This is a linear differential equation of the first order

I.F=ex+1xdx=e1x+1dx=eln x+xI.F=e^{\int \frac{x+1}{x}}dx=e^{\int \frac{1}{x}+1dx}=e^{ln\ x+x}

Solution to the equation;

y(I.F)=x2(I.F)dx+Cy\cdot (I.F)=\int x^2(I.F)dx+C

yeln x+x=x2(eln x+x)dx+Cye^{ln\ x+x}=\int x^2(e^{ln\ x+x})dx+C

yeln x+x=x2eln xexdx+C=x3exdx+Cy\cdot e^{ln\ x+x}=\int x^2\cdot e^{ln\ x}\cdot e^{x}dx+C=\int x^3\cdot e^{x}dx+C

y(xex)=[(x3)(ex)(3x2)(ex)+(6x)(ex)(6)(ex)]+Cy\cdot(x\cdot e^x)=[(x^3)(e^x)-(3x^2)(e^x)+(6x)(e^x)-(6)(e^x)]+C

y(x)=x33x2+6x6+Cexy\cdot(x)=x^3-3x^2+6x-6+Ce^{-x}

y=x23x+66x+Cxexy=x^2-3x+6-\frac{6}{x}+\frac{C}{x}e^{-x}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS