Solve the equation in exact differentials: (3x2+2y)dx+(2x-3)dy=0
(3x2+2y)y=(2x−3)x=2(3x^2+2y)_y=(2x-3)_x=2(3x2+2y)y=(2x−3)x=2
F=∫(3x2+2y)dx=x3+2xy+g(y)F=\int (3x^2+2y)dx=x^3+2xy+g(y)F=∫(3x2+2y)dx=x3+2xy+g(y)
Fy=2x+g′(y)=2x−3F_y=2x+g'(y)=2x-3Fy=2x+g′(y)=2x−3
g′(y)=−3g'(y)=-3g′(y)=−3
g(y)=−3y+cg(y)=-3y+cg(y)=−3y+c
F=x3+2xy−3y+cF=x^3+2xy-3y+cF=x3+2xy−3y+c
x3+2xy−3y+c=0x^3+2xy-3y+c=0x3+2xy−3y+c=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments