Question #271006

Solve the linear inhomogeneous differential equation using the constant variation method: y,-2y/x=I +1/x


1
Expert's answer
2021-11-30T07:25:32-0500

Corresponding homogeneous differential equation


y2y/x=0y'-2y/x=0

dyy=2dxx\dfrac{dy}{y}=2\dfrac{dx}{x}

Integrate


dyy=2dxx\int\dfrac{dy}{y}=\int2\dfrac{dx}{x}

y=Cx2y=Cx^2

y=Cx2+2xCy'=C'x^2+2xC

Cx2+2xC2Cx2x=1+1xC'x^2+2xC-2\dfrac{Cx^2}{x}=1+\dfrac{1}{x}

C=1x2+1x3C'=\dfrac{1}{x^2}+\dfrac{1}{x^3}

Integrate


C=1x12x2+c1C=-\dfrac{1}{x}-\dfrac{1}{2x^2}+c_1

Substitute


y=x12+c1x2y=-x-\dfrac{1}{2}+c_1x^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS