A first order differential equation
dy/dx=f(x,y)
is called homogeneous equation, if the right side satisfies the condition
f(tx,ty)=f(x,y)
we have:
f(x,y)=x+y−xy−3+1
then:
f(tx,ty)=tx+ty−txty−3+1
x+y−xy−3+1=tx+ty−txty−3+1
x(y−x)+y−3=t2x(y−x)+ty−3
x(y−x)(t2−1)+y(t−1)=0
x(y−x)(t+1)+y=0
t=−x(y−x)y−1
Comments