Question #270999

Find the integrating factor to transform the given differential equation into the equation in exact differentials: (3x2y+y3)dx-(2x3+5y)dy=0, μ=μ(y)


1
Expert's answer
2021-11-29T19:07:06-0500
(3x2y+y3)dx(2x3+5y)dy=0(3x^2y+y^3)dx-(2x^3+5y)dy=0

MyNxM=3x2+3y2+6x23x2yy3=3y2\dfrac{M_y-N_x}{-M}=\dfrac{3x^2+3y^2+6x^2}{-3x^2y-y^3}=-\dfrac{3}{y^2}

Integrating factor

μ=μ(y)=e(3/y2)dy=1y3\mu=\mu(y)=e^{\int(-3/y^2)dy}=\dfrac{1}{y^3}

3x2+y2y2dx+2x35yy3dy=0\dfrac{3x^2+y^2}{y^2}dx+\dfrac{-2x^3-5y}{y^3}dy=0


M(x,y)=3x2+y2y2M(x,y)=\dfrac{3x^2+y^2}{y^2}

My=2yy22y(3x2+y2)y4=6x2y3\dfrac{\partial M}{\partial y}=\dfrac{2yy^2-2y(3x^2+y^2)}{y^4}=-\dfrac{6x^2}{y^3}

N(x,y)=2x35yy3N(x,y)=\dfrac{-2x^3-5y}{y^3}

Nx=6x2y3\dfrac{\partial N}{\partial x}=-\dfrac{6x^2}{y^3}

My=6x2y3=Nx\dfrac{\partial M}{\partial y}=-\dfrac{6x^2}{y^3}=\dfrac{\partial N}{\partial x}

Integrating factor μ=μ(y)=1y3.\mu=\mu(y)=\dfrac{1}{y^3}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS