Solve the equation in exact differentials: (y2-1)dx+(2xy+3y)dy=0
(y2−1)dx+(2xy+3y)dy=0(y^2-1)dx+(2xy+3y)dy=0(y2−1)dx+(2xy+3y)dy=0
Mdx+Ndy=0Mdx+Ndy=0Mdx+Ndy=0
M=y2-1
N=2xy+3
∂M∂y=2y\frac{\partial{M}}{\partial{y}}=2y∂y∂M=2y
∂N∂x=2y\frac{\partial{N}}{\partial{x}}=2y∂x∂N=2y
∴∂M∂y=∂N∂x\therefore \frac{\partial{M}}{\partial{y}}=\frac{\partial{N}}{\partial{x}}∴∂y∂M=∂x∂N equation is exact
∫Mdx=∫(y2−1)dx=y2x−x,(y=constant)\int Mdx=\int(y^2-1)dx=y^2x-x,(y=constant)∫Mdx=∫(y2−1)dx=y2x−x,(y=constant)
∫Ndy=∫(2xy+3y)dy=xy2+32y2,(x=constant)\int Ndy=\int(2xy+3y)dy=xy^2+\frac{3}{2}y^2,(x=constant)∫Ndy=∫(2xy+3y)dy=xy2+23y2,(x=constant)
Hence the required solution is;
xy2−x+32y2=Cxy^2-x+\frac{3}{2}y^2=Cxy2−x+23y2=C
(rejecting the repeated term)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments