Question #270988

(3x+3y-1)dx+(x+y+1)dy=0 solve the separable equation using linear substitution


1
Expert's answer
2021-11-26T00:07:12-0500

Solution:Given  (3x+3y1)dx+(x+y+1)dy=0Now,Substitute u=x+y     du=dx+dy y=ux     dy=dudxPut in given ordinary  differential  equation(3(ux)+3x1)dx+(u+1)(dudx)=0    (3u3x+3x1)dx+uduudxdudx=0Simplifying,we get(u+1)du=(22u)dxDivide by 22u(u1)2(u1)du=dxWhich is separable differential equation form M(x)du=N(x)dxIntegrating both sides (u1)2(u1)du=dxu2ln (u1)=x+cback substitution u=x+yln(x+y1)x+y2=x+cSimplify, we getln(x+y1)y2=frac3x2+c,x=1ySolution: Given ~~ \\(3x+3y-1)dx+(x+y+1)dy=0\\Now,Substitute~\\ u=x+y~ \implies du=dx+dy ~\\y=u-x~\implies dy=du-dx \\Put~ in~ given ~ordinary ~~differential~ ~equation \\(3(u-x)+3x-1)dx+(u+1)(du-dx)=0 \\\implies (3u-3x+3x-1)dx+udu-udx-du-dx=0 \\Simplifying,we~ get \\(u+1)du=(2-2u)dx \\Divide ~by ~2-2u \\\frac{(-u-1)}{2(u-1)}du=dx \\Which ~is~ separable~ differential~ equation~form~ M(x)du=N(x)dx \\ \therefore Integrating~both~sides~ \\\int \frac{(-u-1)}{2(u-1)}du=\int dx \\\therefore \frac{-u}{2}-ln ~(u-1)=x+c \\back ~substitution~u=x+y \\-ln (x+y-1)-\frac{x+y}{2}=x+c \\Simplify, ~we ~get \\-ln (x+y-1)-\frac{y}{2}=frac{3x}{2}+c,x=1-y


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS