Solution:Given (3x+3y−1)dx+(x+y+1)dy=0Now,Substitute u=x+y ⟹du=dx+dy y=u−x ⟹dy=du−dxPut in given ordinary differential equation(3(u−x)+3x−1)dx+(u+1)(du−dx)=0⟹(3u−3x+3x−1)dx+udu−udx−du−dx=0Simplifying,we get(u+1)du=(2−2u)dxDivide by 2−2u2(u−1)(−u−1)du=dxWhich is separable differential equation form M(x)du=N(x)dx∴Integrating both sides ∫2(u−1)(−u−1)du=∫dx∴2−u−ln (u−1)=x+cback substitution u=x+y−ln(x+y−1)−2x+y=x+cSimplify, we get−ln(x+y−1)−2y=frac3x2+c,x=1−y
Comments