Solve by I.F method
-2xydy+(x2+y2)dx = 0
−2xydy+(x2+y2)dx=0-2xydy+(x^2+y^2)dx = 0−2xydy+(x2+y2)dx=0
2yy′−y2/x=x2yy'-y^2/x=x2yy′−y2/x=x
v=y2v=y^2v=y2
v′−v/x=xv'-v/x=xv′−v/x=x
integrating foctor:
μ=1/x\mu=1/xμ=1/x
v′/x−v/x2=1v'/x-v/x^2=1v′/x−v/x2=1
v′/x+ddx(1/x)v=1v'/x+\frac{d}{dx}(1/x)v=1v′/x+dxd(1/x)v=1
ddx(v/x)=1\frac{d}{dx}(v/x)=1dxd(v/x)=1
v/x=x+cv/x=x+cv/x=x+c
y=±x(x+c)y=\pm \sqrt{x(x+c)}y=±x(x+c)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments