y′=6y+4x+53y+2x+4y′=2(3y+2x)+53y+2x+4
substitute 3y+2x=z(x)→y=3z−2x→y′=3z′−2
then
3z′−2=2z+5z+4z′−2=2z+53z+12z′=2z+57z+227z+222z+5dz=dx71∫(7z+222(7z+22)−722+35dz=∫dx71∫(2+7223⋅7z+221)dz=∫dx71(2z+49223ln∣7z+22∣)=x+c
Answer
71(2(3y+2x)+49223ln∣7(3y+2x)+22∣)=x+c
Comments