2q(z−px−qy)=1+q2
f(x,y,z,p,q)=2q(z−px−qy)−1−q2=0fx=−2pq,fy=−2q2,fz=2q,fp=−2qx,fq=2(z−px)−4qy−2q
fpdx=fqdy=pfp+qfqdz=−(fx+pfz)dp=−(fy+qfz)dq
−2qxdx=2(z−px)−4qy−2qdy=−2pq+q(2(z−px)−4qy−2q)dz=
=2pq−2pqdp=2q2−2q2dq
dp=dq=0
p=a,q=b
dz=pdx+qdy
z=ax+by+c
by condition 2x=y2+z2 :
2x=y2+(ax+by+c)2
since y+1=0 :
2x=1+(ax−b+c)2
Comments