Question #270543

The only integral surface of the equation and 2q (z - px- qy) 1+ q^2 which is circumscribed about paraboloid 2x= y^2 + z^2 and which touches it along its section by the plane y + 1 = 0 is = ?


1
Expert's answer
2021-11-25T15:55:35-0500

2q(zpxqy)=1+q22q (z - px- qy) =1+ q^2



f(x,y,z,p,q)=2q(zpxqy)1q2=0f(x, y, z, p, q)=2q (z - px- qy) -1- q^2=0fx=2pq,fy=2q2,fz=2q,fp=2qx,fq=2(zpx)4qy2qf_x=-2pq, f_y=-2q^2, f_z=2q, f_p=-2qx, f_q=2(z-px)-4qy-2q




dxfp=dyfq=dzpfp+qfq=dp(fx+pfz)=dq(fy+qfz)\dfrac{dx}{f_p}=\dfrac{dy}{f_q}=\dfrac{dz}{pf_p+qf_q}=\dfrac{dp}{-(f_x+pf_z)}=\dfrac{dq}{-(f_y+qf_z)}



dx2qx=dy2(zpx)4qy2q=dz2pq+q(2(zpx)4qy2q)=\dfrac{dx}{-2qx}=\dfrac{dy}{2(z-px)-4qy-2q}=\dfrac{dz}{-2pq+q(2(z-px)-4qy-2q)}=


=dp2pq2pq=dq2q22q2=\dfrac{dp}{2pq-2pq}=\dfrac{dq}{2q^2-2q^2}


dp=dq=0dp=dq=0

p=a,q=bp=a,q=b

dz=pdx+qdydz=pdx+qdy

z=ax+by+cz=ax+by+c


by condition 2x=y2+z22x= y^2 + z^2 :

2x=y2+(ax+by+c)22x= y^2 + (ax+by+c)^2


since y+1=0y+1=0 :


2x=1+(axb+c)22x= 1 + (ax-b+c)^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS