Let the solution of above differential equation be
y=aoxm+a1xm+1+a2xm+2+......................+anxn+m
dxdy=maoxm−1+(m+1)a1xm+(m+2)a2xm+1+.........................
dx2d2y=m(m−1)aoxm−2+(m+1)ma1xm−1+(m+2)(m+1)a2xm+..................
x2dx2d2y+4xdxdy+(x2+2)y=0
x2[m(m−1)aoxm−2+(m+1)ma1xm−1+(m+2)(m+1)a2xm+..................]+4x[maoxm−1+(m+1)a1xm+(m+2)a2xm+1+.........................]+(x2+2)[aoxm+a1xm+1+a2xm+2+......................+anxn+m]=0
Equating the coefficient of lowest degree in x (which is xm) equal to zero
m(m−1)ao+4mao+2ao=0
m2+3m+2=0
m=−2,−1
For further powers of x,
xm+1:
m(m+1)a1+4(m+1)a1+2a1=0
m2+m+4m+4+2=0
m2+5m+6=0
m=−2,−3
Since the equation has three roots it cannot be solved by frobenius method
The given differential equation refers to Sturm-Liouville equation.
2.
u(x,t)=Ce(1−n2π2)tsin(nπx)
ux=nπCe(1−n2π2)tcos(nπx)
ut=C(1−n2π2)e(1−n2π2)tsin(nπx)
uxx=−n2π2Ce(1−n2π2)tsin(nπx)
utt=C(1−n2π2)2e(1−n2π2)tsin(nπx)
uxt=nπC(1−n2π2)e(1−n2π2)tcos(nπx)
3.
f(x)=a0+n=1∑∞ancos(nπx/L)+n=1∑∞bnsin(nπx/L)
we have: L=π
a0=2L1∫−LLf(x)dx=2π1∫0πsinxdx=π1
an=L1∫−LLf(x)cos(nπx/L)dx=π1∫0πsinxcos(nx)dx=
=π(n2−1)nsinxsin(nx)+cosxcos(nx)∣0π=−π(n2−1)cos(nπ)+1
bn=L1∫−LLf(x)sin(nπx/L)dx=π1∫0πsinxsin(nx)dx=
=π(n2−1)cosxsin(nx)−nsinxcos(nx)∣0π=0
f(x)=π1−n=1∑∞π(n2−1)cos(nπ)+1cos(nx)
Comments