Question #270420

1. Using the Frobenius method solve the following ODE:

x2y" + 4xy' + (x2 + 2)y = 0


2. Determine the first and second order partial derivatives for the function:

u(x,t) = Ce(1-n²π²)tsin(nπx)


3. Obtain the Fourier series for the following function:

0 -π < x < 0

f(x) =

sin x 0 < x < π


1
Expert's answer
2021-11-24T15:46:27-0500

Let the solution of above differential equation be

y=aoxm+a1xm+1+a2xm+2+......................+anxn+my=a_ox^m+a_1x^{m+1}+a_2x^{m+2}+......................+a_nx^{n+m}


dydx=maoxm1+(m+1)a1xm+(m+2)a2xm+1+.........................\dfrac{dy}{dx}=ma_ox^{m-1}+(m+1)a_1x^m+(m+2)a_2x^{m+1}+.........................


d2ydx2=m(m1)aoxm2+(m+1)ma1xm1+(m+2)(m+1)a2xm+..................\dfrac{d^2y}{dx^2}=m(m-1)a_ox^{m-2}+(m+1)ma_1x^{m-1}+(m+2)(m+1)a_2x^{m}+..................



x2d2ydx2+4xdydx+(x2+2)y=0x^2\dfrac{d^2y}{dx^2}+4x\dfrac{dy}{dx}+(x^2+2)y=0


x2[m(m1)aoxm2+(m+1)ma1xm1+(m+2)(m+1)a2xm+..................]+4x[maoxm1+(m+1)a1xm+(m+2)a2xm+1+.........................]+(x2+2)[aoxm+a1xm+1+a2xm+2+......................+anxn+m]=0x^2[m(m-1)a_ox^{m-2}+(m+1)ma_1x^{m-1}+(m+2)(m+1)a_2x^{m}+..................]+4x[ma_ox^{m-1}+(m+1)a_1x^m+(m+2)a_2x^{m+1}+.........................]+(x^2+2)[a_ox^m+a_1x^{m+1}+a_2x^{m+2}+......................+a_nx^{n+m}]=0


Equating the coefficient of lowest degree in x (which is xm) equal to zero

m(m1)ao+4mao+2ao=0m(m-1)a_o+4ma_o+2a_o=0

m2+3m+2=0m^2+3m+2=0

m=2,1m=-2,-1


For further powers of x,

xm+1x^{m+1}:

m(m+1)a1+4(m+1)a1+2a1=0m(m+1)a_1+4(m+1)a_1+2a_1=0

m2+m+4m+4+2=0m^2+m+4m+4+2=0

m2+5m+6=0m^2+5m+6=0

m=2,3m=-2,-3


Since the equation has three roots it cannot be solved by frobenius method

The given differential equation refers to Sturm-Liouville equation.


2.

u(x,t)=Ce(1n2π2)tsin(nπx)u(x,t) = Ce^{(1-n²π²)t}sin(nπx)


ux=nπCe(1n2π2)tcos(nπx)u_x=n\pi Ce^{(1-n²π²)t}cos(nπx)


ut=C(1n2π2)e(1n2π2)tsin(nπx)u_t= C(1-n²π²) e^{(1-n²π²)t}sin(nπx)


uxx=n2π2Ce(1n2π2)tsin(nπx)u_{xx}=-n^2\pi^2 Ce^{(1-n²π²)t}sin(nπx)


utt=C(1n2π2)2e(1n2π2)tsin(nπx)u_{tt}= C(1-n²π²)^2 e^{(1-n²π²)t}sin(nπx)


uxt=nπC(1n2π2)e(1n2π2)tcos(nπx)u_{xt}= n\pi C(1-n²π²) e^{(1-n²π²)t}cos(nπx)


3.

f(x)=a0+n=1ancos(nπx/L)+n=1bnsin(nπx/L)f(x)=a_0+\displaystyle{\sum_{n=1}^{\infin}}a_ncos(n\pi x/L)+\displaystyle{\sum_{n=1}^{\infin}}b_nsin(n\pi x/L)

we have: L=πL=\pi


a0=12LLLf(x)dx=12π0πsinxdx=1πa_0=\frac{1}{2L}\int^L_{-L}f(x)dx=\frac{1}{2\pi}\int^{\pi}_{0}sinxdx=\frac{1}{\pi}


an=1LLLf(x)cos(nπx/L)dx=1π0πsinxcos(nx)dx=a_n=\frac{1}{L}\int^L_{-L}f(x)cos(n\pi x/L)dx=\frac{1}{\pi}\int^{\pi}_{0}sinxcos(nx)dx=


=nsinxsin(nx)+cosxcos(nx)π(n21)0π=cos(nπ)+1π(n21)=\frac{nsinxsin(nx)+cosxcos(nx)}{\pi (n^2-1)}|^{\pi}_0=-\frac{cos(n\pi)+1}{\pi (n^2-1)}


bn=1LLLf(x)sin(nπx/L)dx=1π0πsinxsin(nx)dx=b_n=\frac{1}{L}\int^L_{-L}f(x)sin(n\pi x/L)dx=\frac{1}{\pi}\int^{\pi}_{0}sinxsin(nx)dx=


=cosxsin(nx)nsinxcos(nx)π(n21)0π=0=\frac{cosxsin(nx)-nsinxcos(nx)}{\pi (n^2-1)}|^{\pi}_0=0


f(x)=1πn=1cos(nπ)+1π(n21)cos(nx)f(x)=\frac{1}{\pi}-\displaystyle{\sum_{n=1}^{\infin}}\frac{cos(n\pi)+1}{\pi (n^2-1)}cos(n x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS