Let's solve this expression:
f(x,y,z,p,q)=p+q−3pq=0 1)
Charpit's auxiliary equations for 1):
δxδf+pδzδfdp=δyδf+qδzδfdq=−pδpδf−qδqδfdz=δp−δfdx=δqδfdy
0+p.0dp=0+q.0dq+−p(1−3q)−q(1−3p)dz=3q−1dx=3p−1dy 2)
Taking the first fraction of (2), we obtain dp=0
Integrating it, we get p=a
Substituting the value p = a in (1), we get q=3a−1a
Now, putting the values of p and q respectively from(3) and (4) in dz=pdx+qdy, we obtain
dz=adx+ 3a−1ady
Integrating it, we obtain z=ax+3a−1ay+b
Thus, the required comlete integral is z=ax+3a−1ay+b
Comments