Question #269646

Find the complete integral of pq=1 by charpit's method


1
Expert's answer
2021-11-22T15:12:56-0500

Let's solve this expression:

f(x,y,z,p,q)=p+q3pq=0f(x, y, z, p,q) = p + q - 3pq = 0 1)

Charpit's auxiliary equations for 1):


dpδfδx+pδfδz=dqδfδy+qδfδz=dzpδfδpqδfδq=dxδfδp=dyδfδq\large\frac{dp}{\large\frac{\delta f}{\delta x} +p\large\frac{\delta f}{\delta z} }=\large\frac{dq}{\large\frac{\delta f}{\delta y} +q\large\frac{\delta f}{\delta z} }=\large\frac{dz}{-p\large\frac{\delta f}{\delta p} -q\large\frac{\delta f}{\delta q} }=\large\frac{dx}{\large\frac{-\delta f}{\delta p} }=\large\frac{dy}{\large\frac{\delta f}{\delta q}}


dp0+p.0=dq0+q.0+dzp(13q)q(13p)=dx3q1=dy3p1\large\frac{dp}{0+p.0} = \large\frac{dq}{0+q.0} + \large\frac{dz}{-p(1-3q)-q(1-3p)} = \large\frac{dx}{3q-1} = \large\frac{dy}{3p-1} 2)


Taking the first fraction of (2), we obtain dp=0dp=0

Integrating it, we get p=ap = a

Substituting the value p = a in (1), we get q=a3a1q = \large\frac{a}{3a-1}


Now, putting the values of p and q respectively from(3) and (4) in dz=pdx+qdy,dz = pdx+qdy, we obtain

dz=adx+dz= adx + a3a1dy\frac{a}{3a-1} dy

Integrating it, we obtain z=ax+ay3a1+bz = ax + \large\frac{ay}{3a-1}+b

Thus, the required comlete integral is z=ax+ay3a1+bz = ax + \large\frac{ay}{3a-1}+b

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS