1.
(xy2)dy−(x3+y3)dx=0
(xy2)y′−(x3+y3)=0
y′−x1y=x2y−2 First order Bernoulli ODE
u=y1−(−2)=y3
u′=3y2y′
31u′−x1u=x2
u′−x3u=3x2 Integration factor
μ(x)=e∫(−3/x)dx=x−3
x−3u′−x43u=x3d(x−3u)=x3dx Integrate
∫d(x−3u)=∫x3dx
x−3u=lnx+C
y3=3x3lnx+Cx3
y=x33lnx+C
2.
(x2+y2)dx+xydy=0
x2+y2+xyy′=0
y′+x1y=−xy−1 First order Bernoulli ODE
u=y1−(−1)=y2
u′=2yy′
21u′+x1u=−x
u′+x2u=−2x Integration factor
μ(x)=e∫(2/x)dx=x2
x2u′+2xu=−2x3
d(x2u)=−2x3dx Integrate
∫d(x2u)=−∫2x3dx
x2u=−21x4+C
y2=−21x2+x2C
3.
(y2−x2)dx+2xydy=0
y2−x2+2xyy′=0
y′+2x1y=21xy−1 First order Bernoulli ODE
u=y1−(−1)=y2
u′=2yy′
21u′+2x1u=21x
u′+x1u=xy−1 Integration factor
μ(x)=e∫(1/x)dx=x
xu′+u=x2
d(xu)=x2dx Integrate
∫d(xu)=∫x2dx
xu=31x3+C
y2=31x2+xC
4.
(3x+2y)dx−2xdy=0
y′−x1y=23
Integration factor
μ(x)=e−∫(1/x)dx=x1
x1y′−x21y=2x3
d(x1y)=2x3dx Integrate
∫d(x1y)=∫2x3dx
x1y=23lnx+C
y=23xlnx+Cx
Comments