a)
2y′′′−7y′′+12y′+8y=0 Auxiliary equation (or characteristic equation)
2r3−7r2+12r+8=0
2r2(r+21)−8r(r+21)+16(r+21)=0
2(r+21)(r2−4r+8)=0
2(r+21)((r−2)2+4)=0
r1=−21,r2=2−2i,r3=2+2i The general solution of the homogeneous differential equation is
y=c1e−x/2+e2x(c2cos(2x)+c3sin(2x))
b)
y′′−2y′+5y=exsinx The corresponding homogeneous differential equation is
y′′−2y′+5y=0 Auxiliary equation (or characteristic equation)
r2−2r+5=0
(r−1)2=−4
r1=1−2i,r2=1+2i The general solution of the homogeneous differential equation is
yh=ex(c1cos(2x)+c2sin(2x)) Find the particular solution of the nonhomogeneous differential equation in form
yp=Aexcosx+Bexsinx
yp′=Aexcosx−Aexsinx+Bexsinx+Bexcosx
yp′′=Aexcosx−2Aexsinx−Aexcosx
+Bexsinx+2Bexcosx−Bexsinx Substitute
−2Aexsinx+2Bexcosx−2Aexcosx
+2Aexsinx−2Bexsinx−2Bexcosx
+5Aexcosx+5Bexsinx=exsinx
3B=1
A=0
yp=31exsinx The general solution of the nonhomogeneous differential equation is
y=ex(c1cos(2x)+c2sin(2x))+31exsinx
c)
y′′+y=2xsinx The corresponding homogeneous differential equation is
y′′+y=0 Auxiliary equation (or characteristic equation)
r2+1=0
r1=i,r2=i The general solution of the homogeneous differential equation is
yh=c1cosx+c2sinx Find the particular solution of the nonhomogeneous differential equation in form
yp=(Ax2+Bx+C)cosx+(Dx2+Ex+F)sinx
yp′=−(Ax2+Bx+C)sinx+(2Ax+B)cosx
+(Dx2+Ex+F)cosx+(2Dx+E)sinx
yp′′=−(Ax2+Bx+C)cosx−2(2Ax+B)sinx
+2Acosx−(Dx2+Ex+F)sinx
+2(2Dx+E)cosx+2Dsinx Substitute
−(Ax2+Bx+C)cosx−2(2Ax+B)sinx
+2Acosx−(Dx2+Ex+F)sinx
+2(2Dx+E)cosx+2Dsinx
+(Ax2+Bx+C)cosx+(Dx2+Ex+F)sinx
=2xsinx
−2(2Ax+B)sinx+2Acosx
+2(2Dx+E)cosx+2Dsinx=2xsinx
A=−21
B=D=0
E=−A=21
yp=−21x2cosx+21xsinx The general solution of the nonhomogeneous differential equation is
y=c1cosx+c2sinx−21x2cosx+21xsinx
Comments