1.
Li′+Ri=V5i′+10⋅103i=24t
5i′=24t−10000i Substitute
u=24t−10000i
u′=24−10000i′
i′=0.0024−0.0001u′
0.0005(24−u′)=u
u′=−2000(u−0.012)
u−0.012du=−2000dtIntegrate
u=0.012+c1e−2000t
24t−10000i=0.012+c1e−2000t
i=c2e−2000t+0.0024t−0.0000012
Given i(0)=10−3 A
0.001=c2−0.0000012
c2=−0.0009988e−2000t+0.0024t−0.0000012
i(t)=−0.0009988e−2000t+0.0024t−0.0000012
i(0.05)=−0.0009988e−2000(0.05)+0.0024(0.05)
−0.0000012=0.0001188(A)118.8 μA
2.
Let s(t)= amount, in lb of salt at time t. Then we have
dtds=(rate of salt into tank) − (rate of salt out of tank)
dtds=0−75+(3−2)t2s So we get the differential equation
dtds=−75+t2s
∫sds=−∫75+t2dt
s(t)=c1(75+t)−2
s(0)=c1(75)−2=12
c1=67500
s(t)=67500(75+t)−2
s(60)=67500(75+60)−2
s(60)=3.7037 lb
3.70 lb
Comments