Question #268208

The number of bacteria in a yeast culture grows at a rate which is proportional to the number present. If


the population of a colony of yeast bacteria triples in one hour, find the number of bacteria which will be


present at the end of five hours.

1
Expert's answer
2021-11-19T07:02:45-0500

Let N be the no of bacteria and dNdt = rate of increase of bacteriadNdt=kN    dNN=kdtlnN=kt+AelnN=ekt+A    N=cektLet N = 3c, t = 1, then we have that    3c=cektek=3    k=1.0986Next, we find the no of bacteria present after 5 hoursN=ce5k    nc=ce1.09865    n=e1.09865=243Therefore, the number of bacteria present after 5 hours is 243 times more than the initial population of bacteria\displaystyle \text{Let N be the no of bacteria and $\frac{dN}{dt}$ = rate of increase of bacteria}\\ \frac{dN}{dt}=kN\\ \implies \frac{dN}{N}= kdt\\ \ln N = kt + A\\ e^{\ln N} = e^{kt + A}\\ \implies N = ce^{kt}\\ \text{Let N = 3c, t = 1, then we have that}\\ \implies 3c = ce^{kt}\\ \therefore e^k =3\implies k = 1.0986\\ \text{Next, we find the no of bacteria present after 5 hours}\\ N = ce^{5k}\\ \implies nc = ce^{1.0986\cdot 5}\\ \implies n = e^{1.0986\cdot 5}= 243\\ \text{Therefore, the number of bacteria present after 5 hours is 243 times more than the }\\ \text{initial population of bacteria}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS