Question #268193

 Using Coefficient Linear in Two Variables, determine the general solution of (𝒙 βˆ’ πŸ‘π’š βˆ’ πŸ‘)𝒅𝒙 + πŸ‘(𝒙 + πŸ‘π’š βˆ’ πŸ‘)π’…π’š = 0


1
Expert's answer
2021-11-19T11:15:41-0500

Solution;

(xβˆ’3yβˆ’3)dx+(3x+9yβˆ’9)dy=0....(1)(x-3y-3)dx+(3x+9y-9)dy=0....(1)

From (1) we have two linear equations;

a)xβˆ’3yβˆ’3a)x-3y-3

b)3x+9yβˆ’9b)3x+9y-9

Solve for the intersection (h,k) using (a) and (b);

a)xβˆ’3yβˆ’3=0a)x-3y-3=0

From which ;

x=3+3yx=3+3y

b)3x+9yβˆ’9=0b)3x+9y-9=0

Substitute x;

3(3y+3)+9yβˆ’9=03(3y+3)+9y-9=0

9y+9+9yβˆ’9=09y+9+9y-9=0

18y=018y=0

y=0

Hence;

x=3(0)+3=3x=3(0)+3=3

Now,(h,k)=(3,0)

Take;

x=u+h=u+3x=u+h=u+3

y=v+k=vy=v+k=v

And;

dx=dudx=du

dy=dvdy=dv

Substitute into (1);

[(u+3)βˆ’3(v)βˆ’3]du+[3(u+3)+9(v)βˆ’9]dv=0[(u+3)-3(v)-3]du+[3(u+3)+9(v)-9]dv=0

Simplify into;

(uβˆ’3v)du+(3uβˆ’9v)dv=0(u-3v)du+(3u-9v)dv=0 ...(2)

The above is an homogeneous equation ,we pick M(u,v). Let;

u=mv

du=mdv+vdmdu=mdv+vdm

Substitute into (2);

(mvβˆ’3v)(mdv+vdm)+(3mvdvβˆ’9vdv)=0(mv-3v)(mdv+vdm)+(3mvdv-9vdv)=0

Simplifies to;

m2vdv+mv2dmβˆ’3v2dm+9vdv)=0m^2vdv+mv^2dm-3v^2dm+9vdv)=0

v(m2βˆ’9)dv+v2(mβˆ’3)dm=0v(m^2-9)dv+v^2(m-3)dm=0

Resolve as;

dvv+mβˆ’3m2βˆ’9dm=0\frac{dv}{v}+\frac{m-3}{m^2-9}dm=0

Simplifies to;

dvv+dmm+3=0\frac{dv}{v}+\frac{dm}{m+3}=0

Integrate;

∫1vdv+∫1m+3dm=0\int\frac1vdv+\int\frac{1}{m+3}dm=0

ln(v)+ln(m+3)=lncln(v)+ln(m+3)=lnc

lnv(m+3)=lnclnv(m+3)=lnc

Multiply by exponential;

v(m+3)=cv(m+3)=c

But ;

u=mvβ€…β€ŠβŸΉβ€…β€Šm=uvu=mv\implies m=\frac uv

Therefore;

v(uv+3)=cv(\frac uv+3)=c

But;

x=u+3β€…β€ŠβŸΉβ€…β€Šu=xβˆ’3x=u+3\implies u=x-3

And ;

y=vy=v

Now;

u+3v=cu+3v=c

Becomes;

(xβˆ’3)+3y=0(x-3)+3y=0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS