Solution;
(xβ3yβ3)dx+(3x+9yβ9)dy=0....(1)
From (1) we have two linear equations;
a)xβ3yβ3
b)3x+9yβ9
Solve for the intersection (h,k) using (a) and (b);
a)xβ3yβ3=0
From which ;
x=3+3y
b)3x+9yβ9=0
Substitute x;
3(3y+3)+9yβ9=0
9y+9+9yβ9=0
18y=0
y=0
Hence;
x=3(0)+3=3
Now,(h,k)=(3,0)
Take;
x=u+h=u+3
y=v+k=v
And;
dx=du
dy=dv
Substitute into (1);
[(u+3)β3(v)β3]du+[3(u+3)+9(v)β9]dv=0
Simplify into;
(uβ3v)du+(3uβ9v)dv=0 ...(2)
The above is an homogeneous equation ,we pick M(u,v). Let;
u=mv
du=mdv+vdm
Substitute into (2);
(mvβ3v)(mdv+vdm)+(3mvdvβ9vdv)=0
Simplifies to;
m2vdv+mv2dmβ3v2dm+9vdv)=0
v(m2β9)dv+v2(mβ3)dm=0
Resolve as;
vdvβ+m2β9mβ3βdm=0
Simplifies to;
vdvβ+m+3dmβ=0
Integrate;
β«v1βdv+β«m+31βdm=0
ln(v)+ln(m+3)=lnc
lnv(m+3)=lnc
Multiply by exponential;
v(m+3)=c
But ;
u=mvβΉm=vuβ
Therefore;
v(vuβ+3)=c
But;
x=u+3βΉu=xβ3
And ;
y=v
Now;
u+3v=c
Becomes;
(xβ3)+3y=0
Comments