Solution;
dx2d2y−y=0...(1)
Using power series;
y=n=0∑∞anxn=a0x0+a1x+a2x2+...
Differentiate;
y′=n=1∑∞nanxn−1
Differentiate further;
y′′=n=2∑∞n(n−1)anxn−2
Rewrite as;
y′′=n=0∑∞(n+2)(n+1)an+2xn
Substitute into equation (1);
n=0∑∞(n+2)(n+1)an+2xn−n=0∑∞anxn=0
Equate the coefficients to zero since x=0 ;
(n+2)(n+1)an+2−an=0
an+2=(n+2)(n+1)an
If;
n=0;
a0=a2=0
When n=1;
a3=3.2a1
When n=2;
a4=4.3a2=0
When n=3;
a5=5.3a3
Taking a1=1 ,we have;
a3=61
a5=6.5.31=901
The power series solution is;
y=x+61x3+901x5+...
Comments