Find inverse laplace transform
(2s-56)/(s^2-4s-12)
2s−56s2−4s−12=2s−56(s+2)(s−6)=152(s+2)−112(s−6)\frac{2s-56}{s^2-4s-12}=\frac{2s-56}{(s+2)(s-6)}=\frac{15}{2(s+2)}-\frac{11}{2(s-6)}s2−4s−122s−56=(s+2)(s−6)2s−56=2(s+2)15−2(s−6)11
L−1(152(s+2)−112(s−6))=152e−2t−112e6t.L^{-1}(\frac{15}{2(s+2)}-\frac{11}{2(s-6)})=\frac{15}{2}e^{-2t}-\frac{11}{2}e^{6t}.L−1(2(s+2)15−2(s−6)11)=215e−2t−211e6t.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments