Question #267095
  1. The radius of the planet mars is approximately 3,396 km and has a gravitational acceleration equal to three eighths times than that of the earth. What is the velocity of escape? Ans. 5 km/s
  2. Initially a tank holds 100 gal of a brine solution containing 20lb of salt. At t=0, fresh water is poured into the tank at the rate of 5 gal/min, while stirred mixture leaves the tank at the rate 3 gal/min. what is the amount of salt in the tank after 1 hours? How long will it take for the take to contain 10 lb of salt? Ans. 6.12 lb; 29.37 min.
1
Expert's answer
2021-11-17T15:41:21-0500

1.


gE=GMERE2g_E=\dfrac{GM_E}{R_E^2}

gpl=GMplRpl2=38gEg_{pl}=\dfrac{GM_{pl}}{R_{pl}^2}=\dfrac{3}{8}g_E

The velocity of escape is


vescape=2GMplRpl=2(38gE)(Rpl2)Rplv_{escape}=\sqrt{\dfrac{2GM_{pl}}{R_{pl}}}=\sqrt{\dfrac{2(\dfrac{3}{8}g_E)(R_{pl}^2)}{R_{pl}}}

vescape=3gERpl4v_{escape}=\sqrt{\dfrac{3g_ER_{pl}}{4}}

vescape=3(9.81)(3396000)4=4998.6(m/s)v_{escape}=\sqrt{\dfrac{3(9.81)(3396000)}{4}}=4998.6(m/s)

5 km/s5\ km/s


2.

Let s(t)=s(t) = amount, in lb of salt at time t.t. Then we have

dsdt=\dfrac{ds}{dt}=(rate of salt into tank) − (rate of salt out of tank)


dsdt=03s100+(53)t\dfrac{ds}{dt}=0-\dfrac{3s}{100+(5-3)t}

So we get the differential equation


dsdt=3s100+2t\dfrac{ds}{dt}=-\dfrac{3s}{100+2t}


dss=3dt100+2t\int \dfrac{ds}{s}=-\int\dfrac{3dt}{100+2t}

s(t)=c1(100+2t)3/2s(t)=c_1(100+2t)^{-3/2}

s(0)=c1(100)3/2=20s(0)=c_1(100)^{-3/2}=20

c1=20000c_1=20000

s(t)=20000(100+2t)3/2s(t)=20000(100+2t)^{-3/2}

s(60)=20000(100+2(60))3/2s(60)=20000(100+2(60))^{-3/2}

s(60)=6.13 lbs(60)=6.13\ lb


s(t)=20000(100+2t)3/2=10s(t)=20000(100+2t)^{-3/2}=10

(100+2t)3/2=2000(100+2t)^{3/2}=2000

100+2t=10043100+2t=100\sqrt[3]{4}

t=50(431)t=50(\sqrt[3]{4}-1)

t=29.37 mint=29.37\ min


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS