Its subsidiary equations are given by
−fpdx=−fqdy=−pfp−qfqdz=fq+pfzdp
=fy+qfzdq=0dϕ
2p−xdx=−1dy=2p2−xp−qdz=p+0dp
=0dq=0dϕ Taking dq=0⇒q=c(constant)
p2−xp−q=0 becomes p2−xp−c=0
p=2x±x2+4c Thus
dz=pdx+qdy
dz=2x±x2+4cdx+cdy Integrate
z=∫(2x±x2+4c)dx+c∫dy+C1
∫2x2+4cdx=cln(∣x2+4c+x∣)+4xx2+4c
z=4x2±(cln(∣x2+4c+x∣)+4xx2+4c)
+cy+C2
Comments