Question #266938

Solve the partial differential equation



Px+q=p^2

1
Expert's answer
2021-11-17T13:16:30-0500

Its subsidiary equations are given by


dxfp=dyfq=dzpfpqfq=dpfq+pfz\dfrac{dx}{-f_p}=\dfrac{dy}{-f_q}=\dfrac{dz}{-pf_p-qf_q}=\dfrac{dp}{f_q+pf_z}

=dqfy+qfz=dϕ0=\dfrac{dq}{f_y+qf_z}=\dfrac{d\phi}{0}


dx2px=dy1=dz2p2xpq=dpp+0\dfrac{dx}{2p-x}=\dfrac{dy}{-1}=\dfrac{dz}{2p^2-xp-q}=\dfrac{dp}{p+0}

=dq0=dϕ0=\dfrac{dq}{0}=\dfrac{d\phi}{0}

Taking dq=0q=c(constant)dq = 0 ⇒ q = c (constant)

p2xpq=0p^2-xp-q=0 becomes p2xpc=0p^2-xp-c=0


p=x±x2+4c2p=\dfrac{x\pm\sqrt{x^2+4c}}{2}

Thus


dz=pdx+qdydz=pdx+qdy

dz=x±x2+4c2dx+cdydz=\dfrac{x\pm\sqrt{x^2+4c}}{2}dx+cdy

Integrate


z=(x±x2+4c2)dx+cdy+C1z=\int(\dfrac{x\pm\sqrt{x^2+4c}}{2})dx+c\int dy+C_1

x2+4c2dx=cln(x2+4c+x)+x4x2+4c\int \dfrac{\sqrt{x^2+4c}}{2}dx=c\ln(|\sqrt{x^2+4c}+x|)+\dfrac{x}{4}\sqrt{x^2+4c}

z=x24±(cln(x2+4c+x)+x4x2+4c)z=\dfrac{x^2}{4}\pm(c\ln(|\sqrt{x^2+4c}+x|)+\dfrac{x}{4}\sqrt{x^2+4c})

+cy+C2+cy+C_2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS