Question #266936

Xyp+y^2q+2x-xyz

1
Expert's answer
2021-11-17T06:42:51-0500

Solution;

xyp+y2q+2x2xyzxyp+y^2q+2x^2-xyz

Rewrite as;

xyp+y2q=xyz2x2xyp+y^2q=xyz-2x^2

Here;

P=xyP=xy

Q=y2Q=y^2

R=xyz2x2R=xyz-2x^2

Axillary equations are;

dxP=dyQ=dzR\frac{dx}{P}=\frac{dy}{Q}=\frac{dz}{R}

dxxy=dyy2=dzxyz2x2\frac{dx}{xy}=\frac{dy}{y^2}=\frac{dz}{xyz-2x^2} ......(1)

Taking the first two fractions in (1)

dxxy=dyy2\frac{dx}{xy}=\frac{dy}{y^2}

Simplify;

dxx=dyy\frac{dx}{x}=\frac{dy}{y}

Integrating respectively;

log(x)=log(y)+log(c1)log(x)=log(y)+log(c_1)

Therefore;

log(xy)=log(c1)    xy=+c1=klog(\frac xy)=log(c_1)\implies\frac xy=_-^+c_1=k .....(2)

Taking the last two equations in (1);

dyy2=dzxyz2x2\frac{dy}{y^2}=\frac{dz}{xyz-2x^2}

Substituting (2);

dyy2=dzky2z2k2y2\frac{dy}{y^2}=\frac{dz}{ky^2z-2k^2y^2}

Simplify as;

kdy=1z2kdzkdy=\frac{1}{z-2k}dz

Integrating ;

ky=log(z2k)+c2ky=log(z-2k)+c_2

Using (2) as substitution;

xlog(z2xy)=c2x-log(z-\frac{2x}{y})=c_2 ....(3)

The general solution is given by (2) and (3);

(xy,xlog(z2xy)=0(\frac xy,x-log(z-\frac{2x}{y})=0





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS