Solution;
(2x+tany)dx+(x−x2tany)dy=0...(1)
The equation is in the form;
Mdx+Ndy=0 ....(2)
Comparing (1) and (2);
M=2x+tany
N=x−x2tany
∂y∂M=sec2y
∂x∂N=1−2xtany
Therefore;
Using cos(y) as the integrating factor makes (1) exact.
Multiple (1) with the I.F;
(2xcosy+siny)dx+(xcosy−x2siny)dy=0.....(3)A solution of (3) will be;
∫y=constantdx+∫ (Terms in N without x)dy=C
∫(2xcosy+siny)dx+∫0=C
cosy∫2xdx+siny∫1dx=C
x2cosy+xsiny=C
Comments