Question #266343

Solve: z(x+2y)p-z(2x+y)q=y^2-x^2


1
Expert's answer
2021-11-18T17:18:01-0500

Solution:

z(x+2y)pz(2x+y)q=y2x2;z(x+2y)p-z(2x+y)q=y^2-x^2;

The auxiliary equation are:

dxz(x+2y)=dyz(2x+y)=dzy2x2;\frac{dx}{z(x+2y)}=\frac{dy}{-z(2x+y)}=\frac{dz}{y^2-x^2};

Considering the first two equations:

dxdy3z(x+y)=0..........(1)\frac{dx-dy}{3z(x+y)}=0..........(1)

dx=dydx=dy

integrating:

x=y+c1;x=y+c_1;

Considering (1) and the last auxiliary equatoin:

dxdy3z(x+y)=dzx2+y2;\frac{dx-dy}{3z(x+y)}=\frac{dz}{x^2+y^2};

(xy)(dxdy)=3zdz;(x-y)(dx-dy)=3zdz;

xdxxdyydx+ydy=3zdz;xdx-xdy-ydx+ydy=3zdz;

integrating:

x222xy+y22=32z2+c2;\frac{x^2}{2}-2xy+\frac{y^2}{2}=\frac{3}{2}z^2+c_2;

x24xy+y2=3z2+c2;x^2-4xy+y^2=3z^2+c_2;

Answer:

The solution of the equation is:

F(xy,x2+y23z24xy)=0.F(x-y,x^2+y^2-3z^2-4xy)=0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS