(D2+DD′−6D′2)z=cos(2x+y)
The auxiliary equation is m2+m−6=0
m2−2m+3m−6=0
m(m−2)+3(m−2)=0
(m+3)(m−2)=0
Solved to get m=2,−3
∴ the C.F is f1(y+2x)+xf2(y-3x)
P.I =D2+DD′−6D′21cos(2x+y)
Replacing D2=-a2, DD'=-ab, D'2=-b2
From a=2, b=1
D2=-4, DD'=-2, D'2=-1
P.I=D2+DD′−6D′21cos(2x+y)
Incase of failure of f(D,D')=f(a,b)=0 for a=2, b=1 in cos(2x+y)
We therefore differentiate f(D,D') with respect to D and multiply f(x,y) by x
P.I=2D+D′1xcos(2x+y)
Now replace D by a=2 and D' by b =1
P.I=2(2)+(1)1xcos(2x+y)
=5x cos(2x+y)
z=C.F+P.I
∴z=f1(y+2x)+xf2(y−3x)+5x cos(2x+y)
Comments