the solution of the given linear differential equation x^2 y'+x(x+2)=e^x for x>0
x2y′+x(x+2)=exx2y′=ex−x(x+2)y′=ex−x2−2xx2dy dx=ex−x2−2xx2 dy=(ex−x2−2x)dxx2∫1 dy=∫exx2−2x−1 dxy=−2ln(x)+Ei(x)−exx−x+C\begin{gathered} x^{2} y^{\prime}+x(x+2)=e^{x} \\ x^{2} y^{\prime}=e^{x}-x(x+2) \\ y^{\prime}=\frac{e^{x}-x^{2}-2 x}{x^{2}} \\ \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{e^{x}-x^{2}-2 x}{x^{2}} \\ \mathrm{~d} y=\frac{\left(e^{x}-x^{2}-2 x\right) \mathrm{d} x}{x^{2}} \\ \int 1 \mathrm{~d} y=\int \frac{e^{x}}{x^{2}}-\frac{2}{x}-1 \mathrm{~d} x \\ y=-2 \ln (x)+\mathbf{E i}(x)-\frac{e^{x}}{x}-x+C \end{gathered}x2y′+x(x+2)=exx2y′=ex−x(x+2)y′=x2ex−x2−2x dxdy=x2ex−x2−2x dy=x2(ex−x2−2x)dx∫1 dy=∫x2ex−x2−1 dxy=−2ln(x)+Ei(x)−xex−x+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments