Question #264693

the solution of the given linear differential equation x^2 y'+x(x+2)=e^x for x>0


1
Expert's answer
2021-11-12T12:32:32-0500

x2y+x(x+2)=exx2y=exx(x+2)y=exx22xx2dy dx=exx22xx2 dy=(exx22x)dxx21 dy=exx22x1 dxy=2ln(x)+Ei(x)exxx+C\begin{gathered} x^{2} y^{\prime}+x(x+2)=e^{x} \\ x^{2} y^{\prime}=e^{x}-x(x+2) \\ y^{\prime}=\frac{e^{x}-x^{2}-2 x}{x^{2}} \\ \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{e^{x}-x^{2}-2 x}{x^{2}} \\ \mathrm{~d} y=\frac{\left(e^{x}-x^{2}-2 x\right) \mathrm{d} x}{x^{2}} \\ \int 1 \mathrm{~d} y=\int \frac{e^{x}}{x^{2}}-\frac{2}{x}-1 \mathrm{~d} x \\ y=-2 \ln (x)+\mathbf{E i}(x)-\frac{e^{x}}{x}-x+C \end{gathered}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS