this is the canonical form of elliptic equation, 2-D Laplace equation:
uxx+uyy=0
we have uxx=−uyy=a
where a is constant
general solution:
u(x,y)=4a(x2−y2)
solution for rectangle with sides L and H:
for boundary conditions:
u(0,y)=g(y),u(L,y)=0,u(x,0)=0,u(x,H)=0
u(x,y)=∑Bnsinh(Hnπ(x−L))sin(Hnπy)
Bn=Hsinh(Hnπ(−L))2∫0Hg(y)sin(Hnπy)
for boundary conditions:
u(0,y)=0,u(L,y)=0,u(x,0)=0,u(x,H)=f(x)
u(x,y)=∑Bnsinh(Lnπy)sin(Lnπx)
Bn=Lsinh(LnπH)2∫0Lf(x)sin(Lnπx)
Comments