(1+sin(y))dx = (2y cos(y) − x(sec(y) − tan(y)))dydydx = (1+sin(y))2y cos(y) − x(sec(y) − tan(y))dydx +(1+sin(y)) x(sec(y) − tan(y))= (1+sin(y))2y cos(y) (First Order Linear Equation)IF = e∫(1+sin(y)) (sec(y) − tan(y))dy = e(1+sin(y))−1x e(1+sin(y))−1 = ∫(1+sin(y))2y cos(y) e(1+sin(y))−1 dy + Cx = e(1+sin(y))1 ∫(1+sin(y))2y cos(y) e(1+sin(y))−1 dy + Ce(1+sin(y))1 x(y)= e(1+sin(y))1 ∫(1+sin(y))2y cos(y) e(1+sin(y))−1 dy + Ce(1+sin(y))1
Comments