Question #263095

write the ordinary differential equation (1+sin y)dx = (2ycosy-x(secy-tan y))dy


1
Expert's answer
2021-12-13T03:17:30-0500

(1+sin(y))dx  =  (2y cos(y)    x(sec(y)    tan(y)))dydxdy =  2y cos(y)    x(sec(y)    tan(y))(1+sin(y))dxdy + x(sec(y)    tan(y))(1+sin(y))=  2y cos(y)  (1+sin(y))     (First  Order  Linear  Equation)IF  =  e (sec(y)    tan(y))(1+sin(y))dy   =  e1(1+sin(y))x  e1(1+sin(y))   =  2y cos(y)  (1+sin(y))e1(1+sin(y))  dy    +  Cx  =    e1(1+sin(y)) 2y cos(y)  (1+sin(y))e1(1+sin(y))  dy    +   Ce1(1+sin(y)) x(y)=    e1(1+sin(y)) 2y cos(y)  (1+sin(y))e1(1+sin(y))  dy    +   Ce1(1+sin(y))\left(\mathrm{1}+\mathrm{sin(}y\mathrm{)}\right)dx{}{}\ \ =\ \ \left(\mathrm{2}y\ \mathrm{cos}\left(y\right)\ \ -\ \ x\left(\mathrm{sec}\left(y\right)\ \ -\ \ \mathrm{tan}\left(y\right)\right)\right)dy \\ \\ \frac{dx}{dy}\ =\ \ \frac{\mathrm{2}y\ \mathrm{cos}\left(y\right)\ \ -\ \ x\left(\mathrm{sec}\left(y\right)\ \ -\ \ \mathrm{tan}\left(y\right)\right)}{\left(\mathrm{1}+\mathrm{sin}\left(y\right)\right)} \\ \\ \frac{dx}{dy}\ +\frac{\ x\left(\mathrm{sec}\left(y\right)\ \ -\ \ \mathrm{tan}\left(y\right)\right)}{\left(\mathrm{1}+\mathrm{sin}\left(y\right)\right)}=\ \ \frac{\mathrm{2}y\ \mathrm{cos}\left(y\right)\ \ }{\left(\mathrm{1}+\mathrm{sin}\left(y\right)\right)}\ \ \ \ \ \left(First\ \ Order\ \ Linear\ \ Equation\right) \\ \\ IF\ \ =\ \ e^{\int{\frac{\ \left(\mathrm{sec}\left(y\right)\ \ -\ \ \mathrm{tan}\left(y\right)\right)}{\left(\mathrm{1}+\mathrm{sin}\left(y\right)\right)}dy}}\ \ \ =\ \ e^{\frac{-\mathrm{1}}{\left(\mathrm{1}+\mathrm{sin}\left(y\right)\right)}} \\ \\ x\ \ e^{\frac{-\mathrm{1}}{\left(\mathrm{1}+\mathrm{sin}\left(y\right)\right)}}\ \ \ =\ \ \int{\frac{\mathrm{2}y\ \mathrm{cos}\left(y\right)\ \ }{\left(\mathrm{1}+\mathrm{sin}\left(y\right)\right)}}e^{\frac{-\mathrm{1}}{\left(\mathrm{1}+\mathrm{sin}\left(y\right)\right)}}\ \ dy\ \ \ \ +\ \ C \\ \\ x\ \ =\ \ \ \ e^{\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{sin}\left(y\right)\right)}}\ \int{\frac{\mathrm{2}y\ \mathrm{cos}\left(y\right)\ \ }{\left(\mathrm{1}+\mathrm{sin}\left(y\right)\right)}}e^{\frac{-\mathrm{1}}{\left(\mathrm{1}+\mathrm{sin}\left(y\right)\right)}}\ \ dy\ \ \ \ +\ \ \ Ce^{\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{sin}\left(y\right)\right)}}\ \\ \\ x\left(y\right)=\ \ \ \ e^{\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{sin}\left(y\right)\right)}}\ \int{\frac{\mathrm{2}y\ \mathrm{cos}\left(y\right)\ \ }{\left(\mathrm{1}+\mathrm{sin}\left(y\right)\right)}}e^{\frac{-\mathrm{1}}{\left(\mathrm{1}+\mathrm{sin}\left(y\right)\right)}}\ \ dy\ \ \ \ +\ \ \ Ce^{\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{sin}\left(y\right)\right)}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS