Solve the given differential equation by using an appropriate substitution. The DE is a Bernoulli equation.
x dy/dx + y = 1/y^2
divide left and right sides of equation by −(1−y3)/y2-(1-y^3)/y^2−(1−y3)/y2 :
y2y3−1dy=−dxx\frac{y^2}{y^3-1}dy=-\frac{dx}{x}y3−1y2dy=−xdx
∫y2y3−1dy=−∫dxx\int\frac{y^2}{y^3-1}dy=-\int\frac{dx}{x}∫y3−1y2dy=−∫xdx
ln(y3−1)3=c−lnx\frac{ln(y^3-1)}{3}=c-lnx3ln(y3−1)=c−lnx
y=c1x3+13y=\sqrt[3]{\frac{c_1}{x^3}+1}y=3x3c1+1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments