We do substitution u=ey,du=eydy and have
(5x+3u)dx+2xdu=0;
2xdxdu+5x+3u=0;u′(x)+25+23xu=0;t=xu−new variable;u′(x)=t′(x)x+t;t′+25+25⋅t=0;
52t+1dt=−dx;
52∫t+1dt=−∫dx=−x+C;ln∣t+1∣=C−25x;t+1=±eC⋅e−25x=C⋅e−25x,where C:=±eC
t=−1+C⋅e−25x;xu=−1+C⋅e−25x;u=−x+C⋅x⋅e−25x; C∈R
y=ln(u)=ln(x(C⋅e−25x−1)) - general solution
Comments