Question #261387

Solve the differential equation by substitution suggested by equation. Show complete solution.



(5x+3e^y)dx + 2xe^y dy =0

1
Expert's answer
2021-11-07T17:56:00-0500

We do substitution u=ey,du=eydyu=e^y,du=e^ydy and have

(5x+3u)dx+2xdu=0;

2xdudx+5x+3u=0;u(x)+52+32ux=0;t=uxnew variable;u(x)=t(x)x+t;t+52+52t=0;2x\frac{du}{dx}+5x+3u=0;\\ u'(x)+\frac{5}{2}+\frac{3}{2}\frac{u}{x}=0; t=\frac{u}{x}- new \space variable;\\ u'(x)=t'(x)x+t;\\ t'+\frac{5}{2}+\frac{5}{2}\cdot t=0;\\

25dtt+1=dx;\frac{2}{5}\frac{dt}{t+1}=-dx;

25dtt+1=dx=x+C;lnt+1=C52x;t+1=±eCe52x=Ce52x,where C:=±eC\frac{2}{5}\int \frac{dt}{t+1}=-\int dx=-x+C;\\ ln|t+1|=C-\frac{5}{2}x;\\ t+1=\pm e^C\cdot e^{-\frac{5}{2}x}=C\cdot e^{-\frac{5}{2}x},where \space C:=\pm e^C

t=1+Ce52x;ux=1+Ce52x;u=x+Cxe52x;t=-1+C\cdot e^{-\frac{5}{2}x};\\ \frac{u}{x}=-1+C\cdot e^{-\frac{5}{2}x};\\ u=-x+C\cdot x\cdot e^{-\frac{5}{2}x};\\ CRC\in R

y=ln(u)=ln(x(Ce52x1))y=ln(u)=ln \left(x(C\cdot e^{-\frac{5}{2}x}-1) \right) - general solution


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS