Question #261373

Solve the differential equation by substitution suggested by equation. Show complete solution.





(5x+3e^y)dx+2xe^y dy =0

1
Expert's answer
2021-11-07T17:34:27-0500

(5x+3ey)dx+2xeydy=02xeydy=((5x+3ey)dx)eydydx=(5x+3ey2x)(5x+3e^y)dx+2xe^y dy =0\\ 2xe^y dy=-((5x+3e^y)dx)\\ e^y \frac{dy}{dx}=-(\frac{5x+3e^y}{2x})

Let us substitute ey=zeydydx=dzdxe^y=z\Rightarrow e^y \frac{dy}{dx}=\frac{dz}{dx}\\

Then, dzdx=(5x+3ey2x)\frac{dz}{dx}=-(\frac{5x+3e^y}{2x})

dzdx=5232xzdzdx+32xz=52\Rightarrow \frac{d z}{d x}=-\frac{5}{2}-\frac{3}{2 x} \cdot z \\ \Rightarrow \frac{d z}{d x}+\frac{3}{2 x} \cdot z=-\frac{5}{2}

IF=e32xdx=e32lnx=elnx3/2=x3/2I \cdot F=e^{\int \frac{3}{2 x} d x}=e^{\frac{3}{2} \cdot \ln x}=e^{\ln x^{3 / 2}}=x^{3 / 2}

Multiplying above differential equation by I . F, and integrating,

zx3/2=52.x32dx+czx3/2=52x32+132+1+czx3/2=5225x52+ceyx3/2=x52+c[z=ey]\Rightarrow z \cdot x^{3 / 2}=\int -\frac{5}{2}.x^\frac{3}{2}dx+c\\ \Rightarrow z \cdot x^{3 / 2}=-\frac{5}{2} \cdot \frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}+c \\ \Rightarrow z \cdot x^{3 / 2}=-\frac{5}{2} \cdot \frac{2}{5} \cdot x^{\frac{5}{2}}+c\\ \Rightarrow e^{y} \cdot x^{3 / 2}=-x^{\frac{5}{2}}+c\left[\because z=e^{y}\right]\\

ey=x5232+c.x3/2ey=x+cx32ey=cx32xy=lncx32x\Rightarrow e^{y}=-x^{\frac{5}{2}-\frac{3}{2}}+c. x^{-3 / 2}\\ \Rightarrow e^{y}=-x+c x^{-\frac{3}{2}}\\ \Rightarrow e^{y}=c x^{-\frac{3}{2}}-x\\ \Rightarrow y=ln|c x^{-\frac{3}{2}}-x|


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS