a. Rewrite in the form of a first order Bernoulli ODE
dxdy+x1y=y−2 Substitution z=y1−(−2)=y3 
dxdz=3y2dxdy 
y2dxdy+x1y3=1 
31dxdz+x1z=1 
dxdz+x3z=3 Integrating factor
μ(x)=e∫(3/x)dx=x3  
x3dxdz+3x2z=3x3 
d(x3z)=3x3dx Integrate
∫d(x3z)=∫3x3dx 
x3z=43x4+C 
z=43x+x3C 
y=343x+x3C 
b. The equation is in the form of a first order Bernoulli ODE
dxdy+xy=xy1/2 Substitution z=y1−(1/2)=y1/2 
dxdz=2y1dxdy 
2y1dxdy+21xy=21x 
dxdz+21xz=21x  Integrating factor
μ(x)=e∫(x/2)dx=ex2/4  
ex2/4dxdz+21xex2/4z=21xex2/4 
d(ex2/4z)=21xex2/4dx Integrate
∫d(ex2/4z)=∫21xex2/4dx 
ex2/4z=ex2/4+C 
z=1+Ce−x2/4 
y=(1+Ce−x2/4)2 
                             
Comments