Question #260747

dy/dx + y/x =y-2


dy/dx +xy=x sqrt y



1
Expert's answer
2021-11-04T17:13:35-0400

a. Rewrite in the form of a first order Bernoulli ODE


dydx+1xy=y2\dfrac{dy}{dx}+\dfrac{1}{x}y=y^{-2}

Substitution z=y1(2)=y3z=y^{1-(-2)}=y^3


dzdx=3y2dydx\dfrac{dz}{dx}=3y^2\dfrac{dy}{dx}

y2dydx+1xy3=1y^2\dfrac{dy}{dx}+\dfrac{1}{x}y^3=1

13dzdx+1xz=1\dfrac{1}{3}\dfrac{dz}{dx}+\dfrac{1}{x}z=1

dzdx+3xz=3\dfrac{dz}{dx}+\dfrac{3}{x}z=3

Integrating factor


μ(x)=e(3/x)dx=x3\mu(x)=e^{\int(3/x)dx}=x^3

x3dzdx+3x2z=3x3x^3\dfrac{dz}{dx}+3x^2z=3x^3

d(x3z)=3x3dxd(x^3z)=3x^3dx

Integrate


d(x3z)=3x3dx\int d(x^3z)=\int 3x^3dx

x3z=34x4+Cx^3z=\dfrac{3}{4}x^4+C

z=34x+Cx3z=\dfrac{3}{4}x+\dfrac{C}{x^3}

y=34x+Cx33y=\sqrt[3]{\dfrac{3}{4}x+\dfrac{C}{x^3}}


b. The equation is in the form of a first order Bernoulli ODE


dydx+xy=xy1/2\dfrac{dy}{dx}+xy=xy^{1/2}

Substitution z=y1(1/2)=y1/2z=y^{1-(1/2)}=y^{1/2}


dzdx=12ydydx\dfrac{dz}{dx}=\dfrac{1}{2\sqrt{y}}\dfrac{dy}{dx}

12ydydx+12xy=12x\dfrac{1}{2\sqrt{y}}\dfrac{dy}{dx}+\dfrac{1}{2}x\sqrt{y}=\dfrac{1}{2}x

dzdx+12xz=12x\dfrac{dz}{dx}+\dfrac{1}{2}xz=\dfrac{1}{2}x

Integrating factor


μ(x)=e(x/2)dx=ex2/4\mu(x)=e^{\int(x/2)dx}=e^{x^2/4}

ex2/4dzdx+12xex2/4z=12xex2/4e^{x^2/4}\dfrac{dz}{dx}+\dfrac{1}{2}xe^{x^2/4}z=\dfrac{1}{2}xe^{x^2/4}

d(ex2/4z)=12xex2/4dxd(e^{x^2/4}z)=\dfrac{1}{2}xe^{x^2/4}dx

Integrate


d(ex2/4z)=12xex2/4dx\int d(e^{x^2/4}z)=\int \dfrac{1}{2}xe^{x^2/4}dx

ex2/4z=ex2/4+Ce^{x^2/4}z=e^{x^2/4}+C

z=1+Cex2/4z=1+Ce^{-x^2/4}

y=(1+Cex2/4)2y=(1+Ce^{-x^2/4})^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS