a. Rewrite in the form of a first order Bernoulli ODE
dxdy+x1y=y−2 Substitution z=y1−(−2)=y3
dxdz=3y2dxdy
y2dxdy+x1y3=1
31dxdz+x1z=1
dxdz+x3z=3 Integrating factor
μ(x)=e∫(3/x)dx=x3
x3dxdz+3x2z=3x3
d(x3z)=3x3dx Integrate
∫d(x3z)=∫3x3dx
x3z=43x4+C
z=43x+x3C
y=343x+x3C
b. The equation is in the form of a first order Bernoulli ODE
dxdy+xy=xy1/2 Substitution z=y1−(1/2)=y1/2
dxdz=2y1dxdy
2y1dxdy+21xy=21x
dxdz+21xz=21x Integrating factor
μ(x)=e∫(x/2)dx=ex2/4
ex2/4dxdz+21xex2/4z=21xex2/4
d(ex2/4z)=21xex2/4dx Integrate
∫d(ex2/4z)=∫21xex2/4dx
ex2/4z=ex2/4+C
z=1+Ce−x2/4
y=(1+Ce−x2/4)2
Comments