Question #260746
  1. ( y-2x)dx+xdy=0 ,y(-1)=3
  2. dy=(x-4xy)dx ,y(0)= - 1/4
1
Expert's answer
2021-11-04T19:57:56-0400

Let us solve the following differential equations.


1. (y2x)dx+xdy=0,y(1)=3(y-2x)dx+xdy=0 ,y(-1)=3

This equation can be rewritten in the form xy+y2x=0xy'+y-2x=0 or (xy)=2x.(xy)'=2x. It follows that xy=x2+C,xy=x^2+C, and we conclude that the general solution is of the form: y=x+Cx.y=x+\frac{C}x. Then 3=y(1)=1C,3=y(-1)=-1-C, and thus C=4.C=-4. The solution of (y2x)dx+xdy=0,y(1)=3,(y-2x)dx+xdy=0 ,y(-1)=3, is y=x4x.y=x-\frac{4}x.


2. dy=(x4xy)dx,y(0)=1/4dy=(x-4xy)dx ,y(0)= - 1/4

This equation is equivalent to dy14y=xdx,\frac{dy}{1-4y}=xdx, and hence dy14y=xdx.\int\frac{dy}{1-4y}=\int xdx. Then 14ln14y=x22+C.-\frac{1}4\ln|1-4y|=\frac{x^2}2+C.

It follows that y=14y=-\frac{1}4 when x=0,x=0, and hence 14ln2=C.-\frac{1}4\ln 2=C.

We conclude that the solution of dy=(x4xy)dx,y(0)=1/4dy=(x-4xy)dx ,y(0)= - 1/4

is of the form 14ln14y=x2214ln2.-\frac{1}4\ln|1-4y|=\frac{x^2}2-\frac{1}4\ln 2.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS