Question #260691

The integrating factor for the Bernouli differential equation 2xyy' = y^2 - 2x^3 given initial condition y(1)=2


1
Expert's answer
2021-11-03T18:53:05-0400

Rewrite in the form of a first order ODE


y12xy=x2y1y'-\dfrac{1}{2x}y=-x^2y^{-1}

Substitute z=y1(1)=y2z=y^{1-(-1)}=y^2


z=2yyz'=2yy'

2yy1xy2=2x22yy'-\dfrac{1}{x}y^2=-2x^2

z1xz=2x2z'-\dfrac{1}{x}z=-2x^2

Integrating factor

IF=μ(x)=e(1/x)dx=1xIF=\mu(x)=e^{\int(-1/x)dx}=\dfrac{1}{x}

1xz1x(1x)z=2x2(1x)\dfrac{1}{x}z'-\dfrac{1}{x}(\dfrac{1}{x})z=-2x^2(\dfrac{1}{x})

d(zx)=2xdxd(\dfrac{z}{x})=-2xdx

Integrate


d(zx)=2xdx\int d(\dfrac{z}{x})=-\int 2xdx

zx=x2+C\dfrac{z}{x}=-x^2+C

z=x3+Cxz=-x^3+Cx

y2=x3+Cxy^2=-x^3+Cx

y=±x3+Cxy=\pm\sqrt{-x^3+Cx}

Given initial condition y(1)=2y(1)=2


2=(1)3+C(1)2=\sqrt{-(1)^3+C(1)}

C=9C=9

y=x3+9xy=\sqrt{-x^3+9x}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS