Rewrite in the form of a first order ODE
y′−2x1y=−x2y−1 Substitute z=y1−(−1)=y2
z′=2yy′
2yy′−x1y2=−2x2
z′−x1z=−2x2 Integrating factor
IF=μ(x)=e∫(−1/x)dx=x1
x1z′−x1(x1)z=−2x2(x1)
d(xz)=−2xdx Integrate
∫d(xz)=−∫2xdx
xz=−x2+C
z=−x3+Cx
y2=−x3+Cx
y=±−x3+Cx Given initial condition y(1)=2
2=−(1)3+C(1)
C=9
y=−x3+9x
Comments